Skip to main content

Energy Metabolism and Changes in Cellular Composition in Ovarian Cancer

  • Protocol
  • First Online:
Ovarian Cancer

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1049))

  • 5044 Accesses

Abstract

Ovarian cancer possesses metabolic properties typical for any malignancy as well as some specific characteristics. Most of the methodological approach to study metabolism and molecular composition of the living cells are suitable for ovarian cancer research, however, might require minor modifications. The chapter reviews various laboratory techniques adapted to study ovarian cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674

    Article  PubMed  CAS  Google Scholar 

  2. Warburg O (1956) On the origin of cancer cells. Science 123:309–314

    Article  PubMed  CAS  Google Scholar 

  3. Martinez-Outschoorn UE, Sotgia F, Lisanti MP (2012) Power surge: supporting cells “fuel” cancer cell mitochondria. Cell Metab 15:4–5

    Article  PubMed  CAS  Google Scholar 

  4. Nieman KM, Kenny HA, Penicka CV, Ladanyi A, Buell-Gutbrod R et al (2011) Adipocytes promote ovarian cancer metastasis and provide energy for rapid tumor growth. Nat Med 17:1498–1503

    Article  PubMed  CAS  Google Scholar 

  5. Gercel-Taylor C, Doering DL, Kraemer FB, Taylor DD (1996) Aberrations in normal systemic lipid metabolism in ovarian cancer patients. Gynecol Oncol 60:35–41

    Article  PubMed  CAS  Google Scholar 

  6. Fong MY, McDunn J, Kakar SS (2011) Identification of metabolites in the normal ovary and their transformation in primary and metastatic ovarian cancer. PLoS One 6:e19963

    Article  PubMed  CAS  Google Scholar 

  7. Iorio E, Ricci A, Bagnoli M, Pisanu ME, Castellano G et al (2010) Activation of phosphatidylcholine cycle enzymes in human epithelial ovarian cancer cells. Cancer Res 70:2126–2135

    Article  PubMed  CAS  Google Scholar 

  8. Shield K, Ackland ML, Ahmed N, Rice GE (2009) Multicellular spheroids in ovarian cancer metastases: biology and pathology. Gynecol Oncol 113:143–148

    Article  PubMed  Google Scholar 

  9. Kwon Y, Cukierman E, Godwin AK (2011) Differential expressions of adhesive molecules and proteases define mechanisms of ovarian tumor cell matrix penetration/invasion. PLoS One 6:e18872

    Article  PubMed  CAS  Google Scholar 

  10. Zhang Y, Xu B, Liu Y, Yao H, Lu N et al (2012) The ovarian cancer-derived secretory/releasing proteome: a repertoire of tumor markers. Proteomics 12:1883–1891

    Article  PubMed  CAS  Google Scholar 

  11. Wang LN, Tong SW, Hu HD, Ye F, Li SL et al (2012) Quantitative proteome analysis of ovarian cancer tissues using a iTRAQ approach. J Cell Biochem 113:3762–3772

    Article  PubMed  CAS  Google Scholar 

  12. Sinclair J, Metodieva G, Dafou D, Gayther SA, Timms JF (2011) Profiling signatures of ovarian cancer tumour suppression using 2D-DIGE and 2D-LC-MS/MS with tandem mass tagging. J Proteomics 74:451–465

    Article  PubMed  CAS  Google Scholar 

  13. Colomiere M, Ward AC, Riley C, Trenerry MK, Cameron-Smith D et al (2009) Cross talk of signals between EGFR and IL-6R through JAK2/STAT3 mediate epithelial-mesenchymal transition in ovarian carcinomas. Br J Cancer 100:134–144

    Article  PubMed  CAS  Google Scholar 

  14. Sheehan KM, Calvert VS, Kay EW, Lu Y, Fishman D et al (2005) Use of reverse phase protein microarrays and reference standard development for molecular network analysis of metastatic ovarian carcinoma. Mol Cell Proteomics 4:346–355

    Article  PubMed  CAS  Google Scholar 

  15. Irie HY, Shrestha Y, Selfors LM, Frye F, Iida N et al (2010) PTK6 regulates IGF-1-induced anchorage-independent survival. PLoS One 5:e11729

    Article  PubMed  Google Scholar 

  16. Carey MS, Agarwal R, Gilks B, Swenerton K, Kalloger S et al (2010) Functional proteomic analysis of advanced serous ovarian cancer using reverse phase protein array: TGF-beta pathway signaling indicates response to primary chemotherapy. Clin Cancer Res 16:2852–2860

    Article  PubMed  CAS  Google Scholar 

  17. Krueger KE, Srivastava S (2006) Posttranslational protein modifications: current implications for cancer detection, prevention, and therapeutics. Mol Cell Proteomics 5:1799–1810

    Article  PubMed  CAS  Google Scholar 

  18. Seo JH, Jeong KJ, Oh WJ, Sul HJ, Sohn JS et al (2010) Lysophosphatidic acid induces STAT3 phosphorylation and ovarian cancer cell motility: their inhibition by curcumin. Cancer Lett 288:50–56

    Article  PubMed  CAS  Google Scholar 

  19. Chao H, Wang L, Hao J, Ni J, Graham PH et al (2013) Low dose histone deacetylase inhibitor, LBH589, potentiates anticancer effect of docetaxel in epithelial ovarian cancer via PI3K/Akt pathway. Cancer Lett 329(1):17–26

    Article  PubMed  CAS  Google Scholar 

  20. Tomek K, Wagner R, Varga F, Singer CF, Karlic H et al (2011) Blockade of fatty acid synthase induces ubiquitination and degradation of phosphoinositide-3-kinase signaling proteins in ovarian cancer. Mol Cancer Res 9:1767–1779

    Article  PubMed  CAS  Google Scholar 

  21. John Wiley & Sons I (2010) Post-translation modification. http://www.currentprotocols.com/WileyCDA/CurPro3Category/L1-3600,L2-3621.html

  22. National Cancer Institute SFS (2011) http://seer.cancer.gov/statfacts/html/ovary.html

  23. Alley WR Jr, Vasseur JA, Goetz JA, Svoboda M, Mann BF et al (2012) N-linked glycan structures and their expressions change in the blood sera of ovarian cancer patients. J Proteome Res 11:2282–2300

    Article  PubMed  CAS  Google Scholar 

  24. Wu J, Xie X, Liu Y, He J, Benitez R et al (2012) Identification and confirmation of differentially expressed fucosylated glycoproteins in the serum of ovarian cancer patients using a lectin array and LC-MS/MS. J Proteome Res 11:4541–4552

    Article  PubMed  CAS  Google Scholar 

  25. Mechref Y, Hu Y, Garcia A, Hussein A (2012) Identifying cancer biomarkers by mass spectrometry-based glycomics. Electrophoresis 33:1755–1767

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, New York

About this protocol

Cite this protocol

Malek, A. (2013). Energy Metabolism and Changes in Cellular Composition in Ovarian Cancer. In: Malek, A., Tchernitsa, O. (eds) Ovarian Cancer. Methods in Molecular Biology, vol 1049. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-547-7_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-547-7_17

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-546-0

  • Online ISBN: 978-1-62703-547-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics