Skip to main content

Integrating Multiple Types of Data to Identify MicroRNA–Gene Co-modules

  • Protocol
  • First Online:
Ovarian Cancer

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1049))

  • 5049 Accesses

Abstract

MicroRNAs (miRNAs) and genes work cooperatively to form the kernel part of gene regulatory system and affect many crucial biological processes. However, the detailed combinatorial roles of most miRNAs and genes in cellular processes and diseases are still unclear. The huge amount of diverse functional genomic data provides unprecedented opportunities to study the miRNA–gene co-regulations. How to integrate diverse genomic data to identify the regulatory modules of miRNAs and genes is a challenging problem in computational biology. Recently, we have proposed a mathematical data integration framework to discover the miRNA–gene regulatory co-modules. We have applied the proposed method to integrate a set of heterogeneous data sources including the expression profiles of miRNAs and genes on 385 human ovarian cancer samples as well as miRNA–gene interactions and gene–gene interactions. The revealed co-modules show significant biological relevance and potential associations with ovarian cancers and others.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baek D et al (2008) The impact of microRNAs on protein output. Nature 455:64–71

    Article  PubMed  CAS  Google Scholar 

  2. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    Article  PubMed  CAS  Google Scholar 

  3. Bentwich I et al (2005) Identification of hundreds of conserved and nonconserved human microRNAs. Nat Genet 37:766–770

    Article  PubMed  CAS  Google Scholar 

  4. Bossi A, Lehner B (2009) Tissue specificity and the human protein interaction network. Mol Syst Biol 5:260

    Article  PubMed  Google Scholar 

  5. Brunet JP et al (2004) Metagenes and molecular pattern discovery using matrix factorization. Proc Natl Acad Sci U S A 101: 4164–4169

    Article  PubMed  CAS  Google Scholar 

  6. Calvano SE et al (2005) Inflamm and host response to injury large scale collab. res. program (2005) A network-based analysis of systemic inflammation in humans. Nature 437:1032–1037

    Article  PubMed  CAS  Google Scholar 

  7. Corney DC et al (2007) MicroRNA-34b and MicroRNA-34c are targets of p53 and cooperate in control of cell proliferation and adhesion-independent growth. Cancer Res 67:8433–8438

    Article  PubMed  CAS  Google Scholar 

  8. Cui Q et al (2006) Principles of microRNA regulation of a human cellular signaling network. Mol Syst Biol 2:46

    Article  PubMed  Google Scholar 

  9. Enright AJ et al (2003) MicroRNA targets in Drosophila. Genome Biol 5:R1

    Article  PubMed  Google Scholar 

  10. Garzon R et al (2006) MicroRNA expression and function in cancer. Trends Mol Med 12:580–587

    Article  PubMed  CAS  Google Scholar 

  11. Gusev Y et al (2007) Computational analysis of biological functions and pathways collectively targeted by co-expressed microRNAs in cancer. BMC Bioinformatics 8:S16

    Article  PubMed  Google Scholar 

  12. Hartwell LH et al (1999) From molecular to modular cell biology. Nature 402:C47–C52

    Article  PubMed  CAS  Google Scholar 

  13. Hoyer P (2004) Non-negative matrix factorization with sparseness constraints. J Mach Learn Res 5:1457–1469

    Google Scholar 

  14. Hsu CW et al (2008) Characterization of microRNA-regulated protein-protein interaction network. Proteomics 8:1975–1979

    Article  PubMed  CAS  Google Scholar 

  15. Huang JC et al (2007) Using expression profiling data to identify human microRNA targets. Nat Methods 4:1045–1049

    Article  PubMed  CAS  Google Scholar 

  16. Ihmels J et al (2002) Revealing modular organization in the yeast transcriptional network. Nat Genet 31:370–377

    PubMed  CAS  Google Scholar 

  17. Joung JG et al (2007) Discovery of microRNA-mRNA modules via population-based probabilistic learning. Bioinformatics 23:1141–1147

    Article  PubMed  CAS  Google Scholar 

  18. Kim H, Park H (2007) Sparse non-negative matrix factorizations via alternating nonnegativity-constrained least squares for microarray data analysis. Bioinformatics 23:1495–1502

    Article  PubMed  CAS  Google Scholar 

  19. Kim PM, Tidor B (2003) Subsystem identification through dimensionality reduction oflarge-scale gene expression data. Genome Res 13:1706–1718

    Article  PubMed  CAS  Google Scholar 

  20. Koturbash I et al (2010) Small molecules with big effects: the role of the microRNAome in cancer and carcinogenesis. Mutat Res. doi:10.1016/j.mrgentox.2010.05.006

    Google Scholar 

  21. Krek A et al (2005) Combinatorial microRNA target predictions. Nat Genet 37:495–500

    Article  PubMed  CAS  Google Scholar 

  22. Kutalik Z et al (2008) A modular approach for integrative analysis of large-scale geneexpression and drug-response data. Nat Biotechnol 26:531–539

    Article  PubMed  CAS  Google Scholar 

  23. Lagos-Quintana M et al (2003) New microRNAs from mouse and human. RNA 9:175–179

    Article  PubMed  CAS  Google Scholar 

  24. Lai EC et al (2003) Computational identification of Drosophila microRNA genes. Genome Biol 4:R42

    Article  PubMed  Google Scholar 

  25. Lee DD, Seung HS (1999) Learning the parts of objects by non-negative matrix factorization. Nature 401:788–791

    Article  PubMed  CAS  Google Scholar 

  26. Lee DS, Seung HS (2001) Algorithms for non-negative matrix factorization. Adv Neural Inf Process Syst 13:556–562

    Google Scholar 

  27. Lewis BP et al (2003) Prediction of mammalian microRNA targets. Cell 115:787–798

    Article  PubMed  CAS  Google Scholar 

  28. Liang H, Li WH (2007) MicroRNA regulation of human protein protein interaction network. RNA 13:1402–1408

    Article  PubMed  CAS  Google Scholar 

  29. Lim LP et al (2005) Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 433:769–773

    Article  PubMed  CAS  Google Scholar 

  30. Lu J et al (2005) MicroRNA expression profiles classify human cancers. Nature 435:834–838

    Article  PubMed  CAS  Google Scholar 

  31. Myatt SS et al (2010) Definition of microRNAs that repress expression of the tumor suppressor gene FOXO1 in endometrial cancer. Cancer Res 70:367–377

    Article  PubMed  CAS  Google Scholar 

  32. Nunez-Iglesias J et al (2010) Joint genome-wide profiling of miRNA and mRNA expression in Alzheimer’s disease cortex reveals altered miRNA regulation. PLoS One 5:e8898

    Article  PubMed  Google Scholar 

  33. Paatero P, Tapper U (1994) Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values. Environmetrics 5:111–126

    Article  Google Scholar 

  34. Peng X et al (2009) Computational identification of hepatitis C virus associated microRNAmRNA regulatory modules in human livers. BMC Genomics 10:373

    Article  PubMed  Google Scholar 

  35. Qi Y, Ge H (2006) Modularity and dynamics of cellular networks. PLoS Comput Biol 2:e174

    Article  PubMed  Google Scholar 

  36. Rodriguez A et al (2004) Identification of mammalian microRNA host genes and transcription units. Genome Res 14:1902–1910

    Article  PubMed  CAS  Google Scholar 

  37. Sarver AL et al (2009) Human colon cancer profiles show differential microRNA expression depending on mismatch repair status and are characteristic of undifferentiated proliferative states. BMC Cancer 9:401

    Article  PubMed  Google Scholar 

  38. Schaefer A et al (2010) Diagnostic and prognostic implications of microRNA profiling in prostate carcinoma. Int J Cancer 126:1166–1176

    PubMed  CAS  Google Scholar 

  39. Shalgi R et al (2007) Global and local architecture of the mammalian microRNAtranscription factor regulatory network. PLoS Comput Biol 3:e131

    Article  PubMed  Google Scholar 

  40. Stark A et al (2003) Identification of Drosophila microRNA targets. PLoS Biol 1:e60

    Article  PubMed  Google Scholar 

  41. Storey JD, Tibshirani R (2003) Statistical significance for genome-wide studies. Proc Natl Acad Sci U S A 100:9440–9445

    Article  PubMed  CAS  Google Scholar 

  42. Tran DH et al (2008) Finding microRNA regulatory modules in human genome using rule induction. BMC Bioinformatics 9:S5

    Article  PubMed  Google Scholar 

  43. Wurz K et al (2010) MiR-221 and MiR-222 alterations in sporadic ovarian carcinoma: relationship to CDKN1B, CDKNIC and overall survival. Genes Chromosomes Cancer 49:577–584

    PubMed  CAS  Google Scholar 

  44. Yang X et al (2009) miR-449a and miR-449b are direct transcriptional targets of E2F1 and negatively regulate pRb-E2F1 activity through a feedback loop by targeting CDK6 and CDC25A. Genes Dev 23(20):2388–2393

    Article  PubMed  CAS  Google Scholar 

  45. Yoon S, DeMicheli G (2005) Prediction of regulatory modules comprising microRNAs and target genes. Bioinformatics 21(S2):ii93–ii100

    Article  PubMed  CAS  Google Scholar 

  46. Xie X et al (2005) Systematic discovery of regulatory motifs in human promoters and 3′ UTRs by comparison of several mammals. Nature 434:338–345

    Article  PubMed  CAS  Google Scholar 

  47. Xu J, Wong C (2008) A computational screen for mouse signaling pathways targeted by microRNA clusters. RNA 14:1276–1283

    Article  PubMed  CAS  Google Scholar 

  48. Yuan X et al (2009) Clustered microRNAs’ coordination in regulating protein-protein interaction network. BMC Syst Biol 3:65

    Article  PubMed  Google Scholar 

  49. Zhang S, Jin G, Zhang XS, Chen L (2007) Discovering functions and revealing mechanisms at molecular level from biological networks. Proteomics 7:2856–2869

    Article  PubMed  CAS  Google Scholar 

  50. Zhang S, Li Q, Liu J, Zhou XJ (2011) A novel computational framework for simultaneous integration of multiple functional genomic data to identify microRNA-gene regulatory modules. Bioinformatics (ISMB2011) 27:i401–i409

    Article  CAS  Google Scholar 

  51. Zhang X et al (2010) Synergistic effects of the GATA-4-mediated miR-144/451 cluster in protection against simulated ischemia/reperfusion-induced cardiomyocyte death. J Mol Cell Cardiol 49:841–850

    Article  PubMed  CAS  Google Scholar 

  52. Zhou Y et al (2007) Inter- and intra-combinatorial regulation by transcription factors and microRNAs. BMC Genomics 8:396

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This project was supported by the National Natural Science Foundation of China (No.11001256), the ‘Special Presidential Prize—Scientific Research Foundation of the CAS, and the Special Foundation of President of AMSS at CAS for ‘Chen Jing-Run’ Future Star Program.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, New York

About this protocol

Cite this protocol

Zhang, S. (2013). Integrating Multiple Types of Data to Identify MicroRNA–Gene Co-modules. In: Malek, A., Tchernitsa, O. (eds) Ovarian Cancer. Methods in Molecular Biology, vol 1049. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-547-7_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-547-7_16

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-546-0

  • Online ISBN: 978-1-62703-547-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics