Skip to main content

Solid-Phase Peptide Synthesis: An Introduction

  • Protocol
  • First Online:
Peptide Synthesis and Applications

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1047))

Abstract

This chapter provides an introduction to and overview of peptide chemistry with a focus on solid-phase peptide synthesis. The background, the most common reagents, and some mechanisms are presented. This chapter also points to the different chapters and puts them into perspective.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Acm:

Acetamidomethyl

BAL:

Backbone Amide Linker

Boc:

Tert-butyloxycarbonyl

BOP:

Benzotriazol-1-yl-N-oxy-tris(dimethylamino)phosphonium hexafluorophosphate

Cbz:

Benzyloxycarbonyl

COMU:

(1-[(1-(Cyano-2-ethoxy-2-oxoethylideneaminooxy)-dimethylamino-morpholino-methylene)] methanaminium hexafluorophosphate)

DIC:

N,N′-Diisopropylcarbodiimide

DIEA:

N,N-Diisopropylethylamine

DMF:

N,N-Dimethylformamide

Fmoc:

Fluoren-9-ylmethyloxycarbonyl

HATU:

(N-[(Dimethylamino)-1H-1,2,3-triazole[4,5-b]pyridine-1-ylmethylene]-N-methyl- methanaminium hexafluorophosphate N-oxide)

HBTU:

(N-[(1H-Benzotriazol-1-yl)(dimethylamino)methylene]-N-methylmethan- aminium hexafluorophosphate N-oxide)

HOBt:

1-hydroxybenzotriazole

HOAt:

3-Hydroxy-3H-1,2,3-triazolo[4,5-b]pyridine [1-hydroxy-7-azabenzotriazole

NHS:

N-Hydroxysuccinimide

NMP:

N-Methyl-2-pyrrolidinone

Pbf:

2,2,4,6,7-Pentamethyl-dihydrobenzofuran-5-sulfonyl

Pfp:

Pentafluorophenyl

PyBOP:

(1-benzotriazolyloxy-tris-pyrrolidinophosphonium hexafluorophosphate)

TFA:

Trifluoroacetic acid

TFMSA:

Trifluoromethanesulfonic acid

Trt:

Trityl (triphenylmethyl)

References

  1. Merrifield RB (1963) Solid-phase peptide synthesis. synthesis of a tetrapeptide. J Am Chem Soc 85:2149–2154

    Article  CAS  Google Scholar 

  2. Merrifield RB (1985) Solid-phase peptide synthesis (nobel lecture). Science 232:341–347

    Article  Google Scholar 

  3. Bergmann M, Zervas L (1932) Über ein allgemeines verfahren der peptid-synthese. Berichte 65:1192–1201

    Google Scholar 

  4. Dawson PE, Muir TW, Clark-Lewis I, Kent SBH (1994) Synthesis of proteins by native chemical ligation. Science 266:776–779

    Article  PubMed  CAS  Google Scholar 

  5. Rose K (1994) Facile synthesis of homogeneous artificial proteins. J Am Chem Soc 116:30–33

    Article  CAS  Google Scholar 

  6. Brask J, Jensen KJ (2000) Carbopeptides: chemoselective ligation of peptide aldehydes to an aminooxy-functionalized d-galactose template. J Pept Sci 6:290–299

    Article  PubMed  CAS  Google Scholar 

  7. Hudson D (1999) Matrix assisted synthetic transformations: a mosaic of diverse contributions. I. The pattern emerges. J Comb Chem 1:333–360

    Article  PubMed  CAS  Google Scholar 

  8. Hudson D (1999) Matrix assisted synthetic transformations: a mosaic of diverse contributions. I. The pattern is completed. J Comb Chem 1:403–457

    Article  PubMed  CAS  Google Scholar 

  9. Carpino LA, Han GY (1970) The 9-Fluorenylmethoxycarbonyl function, a new base-sensitive amino-protecting group. J Am Chem Soc 92:5748–5749

    Article  CAS  Google Scholar 

  10. Carpino LA, Han GY (1972) The 9-fluorenylmethoxycarbonyl function amino-protecting group. J Org Chem 37:3404–3409

    Article  CAS  Google Scholar 

  11. Alewood P, Alewood D, Miranda L, Love S, Meutermans W, Wilson D (1997) Rapid in situ neutralization protocols for Boc and Fmoc solid-phase chemistries. In: Fields GB (ed) Methods in enzymology, vol 289. Academic, New York, pp 14–28

    Google Scholar 

  12. Stewart JM (1997) Cleavage methods following Boc-based solid-phase peptide synthesis. In: Fields GB (ed) Methods in enzymology, vol 289. Academic, New York, pp 29–43

    Google Scholar 

  13. Atherton E, Fox H, Harkiss D, Logan CJ, Sheppard RC, Williams BJ (1978) Mild procedure for solid-phase peptide synthesis—use of the fluorenylmethoxycarbonyl amino acids. Chem Commun 537–539

    Google Scholar 

  14. Atherton EH, Fox H, Harkiss D, Sheppard RC (1978) Application of polyamide resins to polypeptide synthesis—improved synthesis of beta-endorphin using fluorenylmethoxycarbonyl amino acids. Chem Commun 539–540

    Google Scholar 

  15. Barany G, Albericio F (1985) A 3-dimensional orthogonal protection scheme for solid-phase peptide synthesis under mild conditions. J Am Chem Soc 107:4936–4942

    Article  CAS  Google Scholar 

  16. Isodro-Llobet A, Alvarez M, Albericio F (2009) Amino acid protecting groups. Chem Rev 109:2455–2504

    Article  Google Scholar 

  17. Carpino LA, Shroff H, Triolo SA, Mansour E-SM, Wenschuh H, Albericio F (1993) The 2,2,4,6,7-pentamethyldihydrobenzofuran-5-sulfonyl group (Pbf) as arginine side-chain protectant. Tetrahedron Lett 34:7829–7832

    Article  CAS  Google Scholar 

  18. Aletras A, Barlos K, Gatos D, Koutsogianni S (1995) Preparation of the very acid-sensitive Fmoc-Lys(Mtt)-OH—application in the synthesis of side-chain to side-chain cyclic peptides and oligolysine cores suitable for solid-phase assembly of MAPS and TASPs. Int J Pept Prot Res 45:488–496

    Article  CAS  Google Scholar 

  19. Kunz H, Unverzagt C (1984) The allyloxycarbonyl (Aloc) moiety—conversion of an unsuitable into a valuable amino protecting group for peptide synthesis. Angew Chem Int Ed 23:436–437

    Article  Google Scholar 

  20. Matysiak S, Böldicke T, Tegge W, Frank R (1998) Evaluation of monomethoxytrityl and dimethoxytrityl as orthogonal amino protecting groups in Fmoc solid-phase peptide synthesis. Tetrahedron Lett 39:1733–1734

    Article  CAS  Google Scholar 

  21. Hillman JD, Orugunty RS, Smith JL (2007) U.S. Pat. Appl. 2007037963 A1, Chem Abstr 146:252110

    Google Scholar 

  22. Yue CW, Thierry J, Potier P (1993) 2-Phenyl isopropyl esters as carboxyl terminus protecting groups in the fast synthesis of peptide fragments. Tetrahedron Lett 34:323–326

    Article  CAS  Google Scholar 

  23. König W, Geiger R (1970) Eine neue methode zur synthese von peptiden: aktivierung der carboxylgruppe mit dicyclohexylcarbodiimid unter zusatz von 1-hydroxy-benzotriazolen. Chem Ber-Recl 103:788–798

    Article  Google Scholar 

  24. Carpino LA (1993) 1-Hydroxy-7-azabenzotriazole. An efficient peptide coupling additive. J Am Chem Soc 115:4397–4398

    Article  CAS  Google Scholar 

  25. Subirós-Funosas R, Prohens R, Barbas R, El-Faham A, Albericio F (2009) Oxyma: an efficient additive for peptide synthesis to replace the benzotriazole-based HOBt and HOAt with a lower risk of explosion. Chem Eur J 15:9394–9403

    Article  PubMed  Google Scholar 

  26. Dourtoglou V, Gross B, Lambropoulou V, Zioudrou C (1984) O-Benzotriazolyl-N, N, N′, N′-tetramethyluronium hexafluorophosphate as coupling reagent for the synthesis of peptides of biological interest. Synthesis 7:572–574

    Article  Google Scholar 

  27. Carpino LA (1993) J Am Chem Soc 115:4397–4398

    Google Scholar 

  28. Carpino LA, El-Faham A, Minor CA, Albericio F (1994) Advantageous applications of azabenzotriazole (triazolopyridine)-based coupling reagents to solid-phase peptide synthesis. J Chem Soc Chem Commun 201–203

    Google Scholar 

  29. Coste J, Lenguyen D, Castro B (1990) PyBOP—a new peptide coupling reagent devoid of toxic by-product. Tetrahedron Lett 31:205–208

    Article  CAS  Google Scholar 

  30. El-Faham A, Funosas RS, Prohens R, Albericio F (2009) COMU: A safer and more effective replacement for benzotriazole-based uronium coupling reagents. Chem Eur J 15:9404–9416

    Article  PubMed  CAS  Google Scholar 

  31. Abdelmoty I, Albericio F, Carpino LA, Foxman BM, Kates SA (1994) Lett Pept Sci 1:57–67

    Google Scholar 

  32. Carpino LA, Imazumi H, El-Faham A, Ferrer FJ, Zhang C, Lee Y, Foxman BM, Henklein P, Hanay C, Mügge C, Wenschuh H, Klose J, Beyermann M, Bienert M (2002) The uronium/guanidinium peptide coupling reagents: finally the true uronium salts. Angew Chem Int Ed Engl 41:441–445

    Article  PubMed  CAS  Google Scholar 

  33. Tofteng AP, Pedersen SL, Staerk D, Jensen KJ (2012) Effect of residual water and microwave heating on half-lifes of reagents and reactive intermediates in peptide synthesis. Chem Eur J 18:9024–9031

    Article  PubMed  Google Scholar 

  34. Kisfaludy L, Schön I (1983) Preparation and applications of pentafluorophenyl esters of 9-fluorenylmethyloxycarbonyl amino acids for peptide. Synthesis 325–327

    Google Scholar 

  35. Fields CG, Fields GB (1993) Minimization of tryptophan alkylation following 9-fluorenylmethoxycarbonyl solid-phase peptide synthesis. Tetrahedron Lett 34:6661–6664

    Article  CAS  Google Scholar 

  36. Han Y, Albericio F, Barany G (1997) Occurrence and minimization of cysteine racemization during stepwise solid-phase peptide synthesis. J Org Chem 62:4307–4312

    Article  PubMed  CAS  Google Scholar 

  37. Kaiser T, Nicholson GJ, Kohlbau HJ, Voelter W (1996) Racemization studies of Fmoc-Cys(Trt)-OH during stepwise Fmoc-solid-phase peptide synthesis. Tetrahedron Lett 37:1187–1190

    Article  CAS  Google Scholar 

  38. Meldal M (1992) PEGA: a flow stable polyethylene glycol dimethyl acrylamide copolymer for solid-phase synthesis. Tetrahedron Lett 33:3077–3080

    Article  CAS  Google Scholar 

  39. Garcia-Martin F, Quintanar-Audelo M, Garcia-Ramos Y, Cruz LJ, Gravel C, Furic R, Cruz S, Tulla-Puche J, Albericio F (2006) ChemMatrix, a poly(ethylene glycol)-based support for the solid-phase synthesis of complex peptides. J Comb Chem 8:213–220

    Article  PubMed  CAS  Google Scholar 

  40. Fields GB, Tian Z, Barany G (2002) Principles and practice of solid-phase peptide synthesis. In: Grant GA (ed) Synthetic peptides, a user’s guide, 2nd edn. W. H. Freeman and Company, New York, pp 93–219

    Google Scholar 

  41. Fields GB (ed) (1997) Methods in enzymology (solid-phase peptide synthesis), vol 289. Academic, San Diego

    Google Scholar 

  42. Chan WC, White PD (2004) Fmoc solid-phase peptide synthesis. Oxford University Press, Oxford

    Google Scholar 

  43. James IW (1999) Linkers for solid-phase organic synthesis. Tetrahedron 55:4855–4946

    Article  CAS  Google Scholar 

  44. Guillier F, Orain D, Bradley M (2000) Linkers and cleavage strategies in solid-phase organic synthesis and combinatorial chemistry. Chem Rev 100:2091–2157

    Article  PubMed  CAS  Google Scholar 

  45. Albericio F, Giralt E (2004) Handles and supports. In: Goodman M, Felix A, Moroder L, Toniolo C (eds) Hoyben-Weyl, E22a, synthesis of peptides and peptidomimetics. Thieme, Stuttgart, pp 685–725

    Google Scholar 

  46. Albericio F, Barany G (1987) An acid-labile anchoring linkage for solid-phase synthesis of C-terminal peptide amides under mild conditions. Int J Pept Protein Res 30:206–216

    Article  PubMed  CAS  Google Scholar 

  47. Albericio F, Kneib-Cordonier N, Biancalana S, Gera L, Masada RI, Hudson D, Barany G (1990) Preparation and application of the 5-(4-(9-fluorenylmethyloxycarbonyl)aminomethyl-3,5-dimethoxyphenoxy)valeric acid (PAL) handle for the solid-phase synthesis of c-terminal peptide amides under mild conditions. J Org Chem 55:3730–3743

    Article  CAS  Google Scholar 

  48. Boas U, Brask J, Jensen KJ (2009) The backbone amide linker for solid-phase synthesis. Chem Rev 109:2092–2118

    Article  PubMed  CAS  Google Scholar 

  49. Jensen KJ, Alsina J, Songster MF, Vágner J, Albericio F, Barany G (1998) Backbone amide linker (BAL) strategy for solid-phase synthesis of C-terminal modified and cyclic peptides. J Am Chem Soc 120:5441–5452

    Article  CAS  Google Scholar 

  50. Guillaumie F, Kappel JC, Kelly NM, Barany G, Jensen KJ (2000) Solid-phase synthesis of C-terminal peptide aldehydes from amino acetals anchored to a backbone amide linker (BAL) handle. Tetrahedron Lett 41:6131–6135

    Article  CAS  Google Scholar 

  51. Brask J, Albericio F, Jensen KJ (2003) Fmoc solid-phase synthesis of peptide thioesters by masking as trithioortho esters. Org Lett 5:2951–2953

    Article  PubMed  CAS  Google Scholar 

  52. Bourne GT, Meutermans WDF, Alewood PF, McGeary RP, Scanlon M, Watson AA, Smythe ML (1999) A backbone linker for BOC-based peptide synthesis and on-resin cyclization: synthesis of stylostatin. J Org Chem 64:3095–3101

    Article  PubMed  CAS  Google Scholar 

  53. Ingenito R, Bianchi E, Fattori D, Pessi A (1999) Solid-phase synthesis of peptide C-terminal thioesters by Fmoc/t-Bu chemistry. J Am Chem Soc 121:11369–11374

    Article  CAS  Google Scholar 

  54. Backes BJ, Ellman JA (1999) An alkanesulfonamide ’safety-catch’ linker for solid-phase synthesis. J Org Chem 64:2322–2330

    Article  CAS  Google Scholar 

  55. Tofteng AP, Sørensen KK, Conde-Frieboes KW, Hoeg-Jensen T, Jensen KJ (2009) Fmoc solid-phase synthesis of C-terminal peptide thioesters via formation of a backbone pyroglutamyl imide moiety. Angew Chem Int Ed 48:7411–7414

    Article  CAS  Google Scholar 

  56. Weygand F, Steglich W, Bjarnason J (1966) Leicht Abspaltbare Schutzgruppen Für Säureamidfunktionen, Tetrahedron Lett 7:3483–3487

    Google Scholar 

  57. Narita M, Fukunaga T, Wakabayashi A, Ishikawa K, Nakano H (1984) Syntheses and properties of tertiary peptide bond-containing polypeptides. Int J Pept Protein Res 23:306–314

    Article  CAS  Google Scholar 

  58. Blaakmeer J, Tijsse-Klasen T, Tesser GI (1991) Enhancement of solubility by temporary dimethoxybenzylsubstitution of peptide bonds. Int J Pept Protein Res 37:556–564

    Article  PubMed  CAS  Google Scholar 

  59. Quibell M, Packman LC, Johnson T (1995) Synthesis of the 3-repeat region of human tau-2 by the solid-phase assembly of backbone amide-protected segments. J Am Chem Soc 117:11656–11668

    Article  CAS  Google Scholar 

  60. Wöhr T, Wahl F, Nefzi A, Rohwedder B, Sato T, Sun X, Mutter M (1996) Pseudo-prolines as a solubilizing, structure-disrupting protection technique in peptide synthesis. J Am Chem Soc 118:9218–9227

    Article  Google Scholar 

  61. Annis I, Hargittai B, Barany G (1997) Disulfide bond formation in peptides. In: Fields GB (ed) Methods in enzymology, vol 289. Academic, New York, pp 198–220

    Google Scholar 

  62. Tam JP, Wu C-R, Liu W, Zhang J-W (1991) Disulfide bond formation in peptides by dimethyl sulfoxide. Scope and applications. J Am Chem Soc 113:6657–6662

    Article  CAS  Google Scholar 

  63. Walsh CT (2006) Posttranslational modifications of proteins. Roberts and Company Publishers, Englewood, Colorado

    Google Scholar 

  64. Jansson AM, Hilaire PMS, Meldal M (2004) Synthesis of glycopeptides. In: Goodmann M et al (eds) Synthesis of peptides and peptidomimetics, vol 22b. Thieme, Stuttgart, pp 235–322

    Google Scholar 

  65. Brunsveld L, Kuhlmann J, Waldmann H (2006) Synthesis of palmitoylated ras-peptides and -proteins. Methods 40:151–165

    Article  PubMed  CAS  Google Scholar 

  66. Pedersen SL, Tofteng AP, Malik L, Jensen KJ (2012) Microwave heating in solid-phase peptide synthesis. Chem Soc Rev 41:1826–1844

    Article  PubMed  CAS  Google Scholar 

  67. Malik L, Tofteng AP, Pedersen SL, Sørensen KK, Jensen KJ (2010) Automated ‘X-Y’ robot for peptide synthesis with microwave heating: application to difficult peptide sequences and protein domains. J Pept Sci 16:506–512

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, New York

About this protocol

Cite this protocol

Jensen, K.J. (2013). Solid-Phase Peptide Synthesis: An Introduction. In: Jensen, K., Tofteng Shelton, P., Pedersen, S. (eds) Peptide Synthesis and Applications. Methods in Molecular Biology, vol 1047. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-544-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-544-6_1

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-543-9

  • Online ISBN: 978-1-62703-544-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics