Skip to main content

Method for Measuring Single-Molecule Adhesion Forces and Attachment Lifetimes of Protein–Membrane Interactions

  • Protocol
  • First Online:
Adhesion Protein Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1046))

Abstract

Many proteins that reside in the cytoplasm bind directly to cell membranes and play roles in signaling, adhesion, metabolism, cell structure, and cell motility. Several of these membrane-binding proteins, especially cytoskeletal proteins, have mechanical functions that result in the transmission of forces to the plasma membrane and organelle-membranes. Despite the importance of these interactions, remarkably little is known about the mechanical properties of the bonds between membranes and proteins. In this chapter, we describe a single-molecule, optical-trapping method for the measurement of protein–membrane adhesion forces and force-dependent attachment-lifetimes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lemmon MA (2008) Membrane recognition by phospholipid-binding domains. Nat Rev Mol Cell Biol 9(2):99–111

    Article  PubMed  CAS  Google Scholar 

  2. Levental I, Grzybek M, Simons K (2010) Greasing their way: lipid modifications determine protein association with membrane rafts. Biochemistry 49(30):6305–6316

    Article  PubMed  CAS  Google Scholar 

  3. McLaughlin S, Murray D (2005) Plasma membrane phosphoinositide organization by protein electrostatics. Nature 438(7068):605–611

    Article  PubMed  CAS  Google Scholar 

  4. Sheetz MP, Sable JE, Dobereiner HG (2006) Continuous membrane-cytoskeleton adhesion requires continuous accommodation to lipid and cytoskeleton dynamics. Annu Rev Biophys Biomol Struct 35:417–434

    Article  PubMed  CAS  Google Scholar 

  5. Hokanson DE, Laakso JM, Lin T, Sept D, Ostap EM (2006) Myo1c binds phosphoinositides through a putative pleckstrin homology domain. Mol Biol Cell 17(11):4856–4865

    Article  PubMed  CAS  Google Scholar 

  6. Dippold HC et al (2009) GOLPH3 bridges phosphatidylinositol-4- phosphate and actomyosin to stretch and shape the Golgi to promote budding. Cell 139(2):337–351

    Article  PubMed  CAS  Google Scholar 

  7. McConnell RE, Tyska MJ (2010) Leveraging the membrane-cytoskeleton interface with myosin-1. Trends Cell Biol 20(7):418–426

    Article  PubMed  CAS  Google Scholar 

  8. Greenberg MJ, Ostap EM (2013) Regulation and control of myosin-I by the motor and light chain-binding domains. Trends Cell Biol 23:81–89

    Article  PubMed  CAS  Google Scholar 

  9. Feeser EA, Ignacio CM, Krendel M, Ostap EM (2010) Myo1e binds anionic phospholipids with high affinity. Biochemistry 49:9353–9360

    Article  PubMed  CAS  Google Scholar 

  10. Pyrpassopoulos S, Feeser EA, Mazerik JN, Tyska MJ, Ostap EM (2012) Membrane-bound Myo1c powers asymmetric motility of actin filaments. Curr Biol 22(18):1688–1692

    Article  PubMed  CAS  Google Scholar 

  11. Zot HG, Doberstein SK, Pollard TD (1992) Myosin-I moves actin filaments on a phospholipid substrate: implications for membrane targeting. J Cell Biol 116(2):367–376

    Article  PubMed  CAS  Google Scholar 

  12. Pyrpassopoulos S, Shuman H, Ostap EM (2010) Single-molecule adhesion forces and attachment lifetimes of myosin-I phosphoinositide interactions. Biophys J 99(12):3916–3922

    Article  PubMed  CAS  Google Scholar 

  13. McKenna JM, Ostap EM (2009) Kinetics of the interaction of Myo1c with phosphoinositides. J Biol Chem 284(42):28650–28659

    Article  PubMed  Google Scholar 

  14. Tang N, Lin T, Ostap EM (2002) Dynamics of Myo1c (myosin-ibeta ) lipid binding and dissociation. J Biol Chem 277(45):42763–42768

    Article  PubMed  CAS  Google Scholar 

  15. Veigel C, Bartoo ML, White DC, Sparrow JC, Molloy JE (1998) The stiffness of rabbit skeletal actomyosin cross-bridges determined with an optical tweezers transducer. Biophys J 75(3):1424–1438

    Article  PubMed  CAS  Google Scholar 

  16. Neuman KC, Block SM (2004) Optical trapping. Rev Sci Instrum 75(9):2787–2809

    Article  PubMed  CAS  Google Scholar 

  17. Batters C, Veigel C (2011) Using optical tweezers to study the fine details of myosin ATPase mechanochemical cycle. Methods Mol Biol 778:97–109

    Article  PubMed  CAS  Google Scholar 

  18. Takagi Y, Homsher EE, Goldman YE, Shuman H (2006) Force generation in single conventional actomyosin complexes under high dynamic load. Biophys J 90(4):1295–1307

    Article  PubMed  CAS  Google Scholar 

  19. Litvinov RI, Bennett JS, Weisel JW, Shuman H (2005) Multi-step fibrinogen binding to the integrin (alpha)IIb(beta)3 detected using force spectroscopy. Biophys J 89(4):2824–2834

    Article  PubMed  CAS  Google Scholar 

  20. Bell GI (1978) Models for the specific adhesion of cells to cells. Science 200(4342):618–627

    Article  PubMed  CAS  Google Scholar 

  21. Evans E (2001) Probing the relation between force-lifetime-and chemistry in single molecular bonds. Annu Rev Biophys Biomol Struct 30:105–128

    Article  PubMed  CAS  Google Scholar 

  22. Dudko OK, Hummer G, Szabo A (2008) Theory, analysis, and interpretation of single-molecule force spectroscopy experiments. Proc Natl Acad Sci USA 105(41):15755–15760

    Article  PubMed  CAS  Google Scholar 

  23. Galneder R et al (2001) Microelectrophoresis of a bilayer-coated silica bead in an optical trap: application to enzymology. Biophys J 80(5):2298–2309

    Article  PubMed  CAS  Google Scholar 

  24. Pucadyil TJ, Schmid SL (2010) Supported bilayers with excess membrane reservoir: a template for reconstituting membrane budding and fission. Biophys J 99(2):517–525

    Article  PubMed  CAS  Google Scholar 

  25. Huang C, Mason JT (1978) Geometric packing constraints in egg phosphatidylcholine vesicles. Proc Natl Acad Sci USA 75(1):308–310

    Article  PubMed  CAS  Google Scholar 

  26. Press WH, Teukolsky SA, Vetterling WT, Flannery BP (2002) Numerical revipes in C++. Cambridge University Press, New York

    Google Scholar 

Download references

Acknowledgment

This work was supported by a grant from the NIH (GM057247) to E.M.O.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Pyrpassopoulos, S., Shuman, H., Ostap, E.M. (2013). Method for Measuring Single-Molecule Adhesion Forces and Attachment Lifetimes of Protein–Membrane Interactions. In: Coutts, A. (eds) Adhesion Protein Protocols. Methods in Molecular Biology, vol 1046. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-538-5_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-538-5_24

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-537-8

  • Online ISBN: 978-1-62703-538-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics