Quantitative Analysis of MicroRNA in Blood Serum with Protein-Facilitated Affinity Capillary Electrophoresis

  • Maxim V. Berezovski
  • Nasrin Khan
Part of the Methods in Molecular Biology book series (MIMB, volume 1039)


MicroRNAs play an important role in gene regulation and disease etiology and are blood-based biomarkers of diseases. Here, we describe a protein-facilitated affinity capillary electrophoresis (ProFACE) method for ultra-sensitive direct miRNA detection as low as 300,000 molecules in 1 mL of blood serum, using single-stranded DNA binding protein (SSB) and double-stranded RNA binding protein (p19) as separation enhancers. This method utilizes either the selective binding of SSB to a fluorescent single-stranded DNA/RNA probe or the binding of p19 to miRNA–RNA probe duplex.

Key words

MicroRNA SSB p19 protein Blood serum Capillary electrophoresis Laser-induced fluorescence detection 


  1. 1.
    Lim LP, Lau NC, Weinstein EG, Abdelhakim A, Yekta S, Rhoades MW et al (2003) The microRNAs of Caenorhabditis elegans. Genes Dev 17:991–1008PubMedCrossRefGoogle Scholar
  2. 2.
    Pena JT, Sohn-Lee C, Rouhanifard SH, Ludwig J, Hafner M, Mihailovic A et al (2009) miRNA in situ hybridization in formaldehyde and EDC–fixed tissues. Nat Methods 6:139–141PubMedCrossRefGoogle Scholar
  3. 3.
    Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T (2001) Identification of novel genes coding for small expressed RNAs. Science 294:853–858PubMedCrossRefGoogle Scholar
  4. 4.
    Chen J, Lozach J, Garcia EW, Barnes B, Luo S, Mikoulitch I et al (2008) Highly sensitive and specific microRNA expression profiling using BeadArray technology. Nucleic Acids Res 36:e87PubMedCrossRefGoogle Scholar
  5. 5.
    Krichevsky AM, King KS, Donahue CP, Khrapko K, Kosik KS (2003) MicroRNA array reveals extensive regulation of microRNAs during brain development. RNA 9:1274–1281PubMedCrossRefGoogle Scholar
  6. 6.
    Chen C, Ridzon DA, Broomer AJ, Zhou Z, Lee DH, Nguyen JT et al (2005) Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res 33:e179PubMedCrossRefGoogle Scholar
  7. 7.
    Klein D (2002) Quantification using real-time PCR technology: applications and limitations. Trends Mol Med 8:257–260PubMedCrossRefGoogle Scholar
  8. 8.
    Gassman E, Kuo JE, Zare RN (1985) Electrokinetic separation of chiral compounds. Science 230:813–814CrossRefGoogle Scholar
  9. 9.
    Berezovski M, Krylov SN (2003) Using DNA-binding proteins as an analytical tool. J Am Chem Soc 125:13451–13454PubMedCrossRefGoogle Scholar
  10. 10.
    Krauss G, Sindermann H, Schomburg U, Maass G (1981) Escherichia coli single-strand deoxyribonucleic acid binding protein: stability, specificity, and kinetics of complexes with oligonucleotides and deoxyribonucleic acid. Biochemistry 20:5346–5352PubMedCrossRefGoogle Scholar
  11. 11.
    Overman LB, Bujalowski W, Lohman TM (1988) Equilibrium binding of Escherichia coli single-strand binding protein to single-stranded nucleic acids in the (SSB) 65 binding mode. Biochemistry 27:456–471PubMedCrossRefGoogle Scholar
  12. 12.
    Khan N, Cheng J, Pezack JP, Berezovski MV (2011) Quantitative analysis of microRNA in blood serum with protein-facilitated affinity capillary electrophoresis. Anal Chem 83:6196–6201PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, New York 2013

Authors and Affiliations

  • Maxim V. Berezovski
    • 1
  • Nasrin Khan
    • 2
  1. 1.University of OttawaOttawaCanada
  2. 2.Department of ChemistryUniversity of OttawaOttawaCanada

Personalised recommendations