Skip to main content

Monitoring Dynamic Binding of Chromatin Proteins In Vivo by Single-Molecule Tracking

  • Protocol
  • First Online:
Book cover Imaging Gene Expression

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1042))

Abstract

Single-molecule fluorescence microscopy has been used for decades to quantify macromolecular dynamics occurring in specimens that are in direct contact with a coverslip. This has permitted in vitro analysis of single-molecule motion in various biochemically reconstituted systems as well as in vivo studies of single-molecule motion on cell membranes. More recently, thanks to improvements in fluorescent tags and microscopes, it has been possible to follow individual molecules inside thicker specimens such as the nucleus of living cells. This has enabled a detailed description of the live-cell binding of nuclear proteins to DNA. In this protocol we describe a method to quantify intranuclear binding using single-molecule tracking (SMT).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wu B, Piatkevich KD, Lionnet T, Singer RH, Verkhusha VV (2011) Modern fluorescent proteins and imaging technologies to study gene expression, nuclear localization, and dynamics. Curr Opin Cell Biol 23:310–317

    Article  PubMed  CAS  Google Scholar 

  2. Phair RD, Misteli T (2001) Kinetic modelling approaches to in vivo imaging. Nat Rev Mol Cell Biol 2:898–907

    Article  PubMed  CAS  Google Scholar 

  3. Li G-W, Elf J (2009) Single molecule approaches to transcription factor kinetics in living cells. FEBS Lett 583:3979–3983

    Article  PubMed  CAS  Google Scholar 

  4. Carrero G, McDonald D, Crawford E, de Vries G, Hendzel MJ (2003) Using FRAP and mathematical modeling to determine the in vivo kinetics of nuclear proteins. Methods 29:14–28

    Article  PubMed  CAS  Google Scholar 

  5. van Royen ME, Farla P, Mattern KA, Geverts B, Trapman J, Houtsmuller AB (2009) Fluorescence recovery after photobleaching (FRAP) to study nuclear protein dynamics in living cells. Methods Mol Biol 464:363–385

    Article  PubMed  Google Scholar 

  6. Michelman-Ribeiro A, Mazza D, Rosales T, Stasevich TJ, Boukari H, Rishi V, Vinson C, Knutson JR, McNally JG (2009) Direct measurement of association and dissociation rates of DNA binding in live cells by fluorescence correlation spectroscopy. Biophys J 97:337–346

    Article  PubMed  CAS  Google Scholar 

  7. Mueller F, Wach P, McNally JG (2008) Evidence for a common mode of transcription factor interaction with chromatin as revealed by improved quantitative fluorescence recovery after photobleaching. Biophys J 94:3323–3339

    Article  PubMed  CAS  Google Scholar 

  8. Digman MA, Brown CM, Horwitz AR, Mantulin WW, Gratton E (2008) Paxillin dynamics measured during adhesion assembly and disassembly by correlation spectroscopy. Biophys J 94:2819–2831

    Article  PubMed  CAS  Google Scholar 

  9. Weidtkamp-Peters S, Weisshart K, Schmiedeberg L, Hemmerich P (2009) Fluorescence correlation spectroscopy to assess the mobility of nuclear proteins. Methods Mol Biol 464:321–341

    Article  PubMed  Google Scholar 

  10. Mueller F, Mazza D, Stasevich TJ, McNally JG (2010) FRAP and kinetic modeling in the analysis of nuclear protein dynamics: what do we really know? Curr Opin Cell Biol 22:403–411

    Article  PubMed  CAS  Google Scholar 

  11. Speil J, Baumgart E, Siebrasse J-P, Veith R, Vinkemeier U, Kubitscheck U (2011) Activated STAT1 transcription factors conduct distinct saltatory movements in the cell nucleus. Biophys J 101:2592–2600

    Article  PubMed  CAS  Google Scholar 

  12. Mazza A, Abernathy N, Golob TM, McNally JG (2012) A benchmark for chromatin binding measurements in live cells. Nucleic Acids Res 40(15):e119

    Article  PubMed  CAS  Google Scholar 

  13. Selvin PR, Ha T (2007) Single-molecule techniques: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  14. Thompson RE, Larson DR, Webb WW (2002) Precise nanometer localization analysis for individual fluorescent probes. Biophys J 82:2775–2783

    Article  PubMed  CAS  Google Scholar 

  15. Grünwald D, Martin RM, Buschmann V, Bazett-Jones DP, Leonhardt H, Kubitscheck U, Cardoso MC (2008) Probing intranuclear environments at the single-molecule level. Biophys J 94:2847–2858

    Article  PubMed  Google Scholar 

  16. Grünwald D, Spottke B, Buschmann V, Kubitscheck U (2006) Intranuclear binding kinetics and mobility of single native U1 snRNP particles in living cells. Mol Biol Cell 17:5017–5027

    Article  PubMed  Google Scholar 

  17. Elf J, Li G-W, Xie XS (2007) Probing transcription factor dynamics at the single-molecule level in a living cell. Science 316:1191–1194

    Article  PubMed  CAS  Google Scholar 

  18. Ritter JG, Veith R, Siebrasse J-P, Kubitscheck U (2008) High-contrast single-particle tracking by selective focal plane illumination microscopy. Opt Express 16:7142–7152

    Article  PubMed  Google Scholar 

  19. Ritter JG, Veith R, Veenendaal A, Siebrasse JP, Kubitscheck U (2010) Light sheet microscopy for single molecule tracking in living tissue. PLoS One 5:e11639

    Article  PubMed  Google Scholar 

  20. Tokunaga M, Imamoto N, Sakata-Sogawa K (2008) Highly inclined thin illumination enables clear single-molecule imaging in cells. Nat Methods 5:159–161

    Article  PubMed  CAS  Google Scholar 

  21. Los GV, Wood K (2007) The HaloTag: a novel technology for cell imaging and protein analysis. Methods Mol Biol 356:195–208

    PubMed  CAS  Google Scholar 

  22. Axelrod D (2001) Selective imaging of surface fluorescence with very high aperture microscope objectives. J Biomed Opt 6:6–13

    Article  PubMed  CAS  Google Scholar 

  23. Matsuoka S, Iijima M, Watanabe TM, Kuwayama H, Yanagida T, Devreotes PN, Ueda M (2006) Single-molecule analysis of chemoattractant-stimulated membrane recruitment of a PH-domain-containing protein. J Cell Sci 119:1071–1079

    Article  PubMed  CAS  Google Scholar 

  24. Crocker JC, Grier DG (1996) Methods of digital video microscopy for colloidal studies. J Colloid Interface Sci 179:298–310

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Drs. Tatiana Karpova and Tatsuya Morisaki for constructive feedback on the manuscript. DM is funded by a Marie Curie International Incoming Fellowship [Grant agreement: 27432].

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Mazza, D., Ganguly, S., McNally, J.G. (2013). Monitoring Dynamic Binding of Chromatin Proteins In Vivo by Single-Molecule Tracking. In: Shav-Tal, Y. (eds) Imaging Gene Expression. Methods in Molecular Biology, vol 1042. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-526-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-526-2_9

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-525-5

  • Online ISBN: 978-1-62703-526-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics