Skip to main content

In Vivo Two-Photon Microscopy of Microglia

  • Protocol
  • First Online:
Microglia

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1041))

Abstract

In vivo imaging with two-photon microscopy is becoming an indispensable technique to investigate cellular and subcellular phenomenon in living tissues including the central nervous system. This microscopy enables to image dynamics of molecules, morphology, and excitability with minimal invasion to tissues. Microglia are residual immune-responsive cells in the central nervous system and show highly dynamic response to the environmental alterations. Diverse roles of microglial functions in the intact and pathological brain are still largely unknown. In this chapter we describe the detailed method to image the dynamics of microglia in the mouse brain in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tremblay ME, Stevens B, Sierra A et al (2011) Mini-Symposium: The role of microglia in the healthy brain. J Neurosci 31:16064–16069

    Article  PubMed  CAS  Google Scholar 

  2. Hirasawa T, Ohsawa K, Imai Y et al (2005) Visualization of microglia in living tissues using Iba1-EGFP transgenic mice. J Neurosci Res 81:357–362

    Article  PubMed  CAS  Google Scholar 

  3. Jung S, Aliberti J, Graemmel P et al (2000) Analysis of fractalkine receptor CX3CR1 function by targeted deletion and green fluorescent protein reporter gene insertion. Mol Cell Biol 20:4106–4114

    Article  PubMed  CAS  Google Scholar 

  4. Nimmerjahn A, Kirchhoff F, Helmchen F (2005) Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 308:1314–1318

    Article  PubMed  CAS  Google Scholar 

  5. Davalos D, Grutzendler J, Yang G et al (2005) ATP mediates rapid microglial response to local brain injury in vivo. Nat Neurosci 8:752–758

    Article  PubMed  CAS  Google Scholar 

  6. Wake H, Moorhouse AJ, Jinno S et al (2009) Resting microglia directly monitor the functional state of synapses in vivo and determine the fate of ischemic terminals. J Neurosci 29:3974–3980

    Article  PubMed  CAS  Google Scholar 

  7. Tremblay ME, Lowery RL, Majewska AK (2010) Microglial interactions with synapses are modulated by visual experience. PLoS Biol 8:e1000527

    Article  PubMed  Google Scholar 

  8. Kondo S, Kohsaka S, Okabe S (2011) Long-lasting effect of a transient peripheral immune response on cortical spine dynamics revealed by two-photon microscopy in vivo. Mol Brain 4:27

    Article  PubMed  CAS  Google Scholar 

  9. Majewska A, Yiu G, Yuste R (2000) A custom-made two-photon microscope and deconvolution system. Eur J Physiol 441:398–408

    Article  CAS  Google Scholar 

  10. Xu HT, Pan F, Yang G, Gan WB (2007) Choice of cranial window type for in vivo imaging affects dendritic spine turnover in the cortex. Nat Neurosci 10:549–551

    Article  PubMed  CAS  Google Scholar 

  11. Holtmaat A, Bonhoeffer T, Chow DK et al (2009) Long-term, high-resolution imaging in the mouse neocortex through a chronic cranial window. Nat Protocols 4:1128–1144

    Article  CAS  Google Scholar 

  12. Farrar MJ, Bernstein IM, Schlafer DH et al (2012) Chronic in vivo imaging in the mouse spinal cord using an implanted chamber. Nat Methods 9:297–302

    Article  PubMed  CAS  Google Scholar 

  13. Drew PJ, Shih AY, Driscoll JD et al (2010) Chronic optical access through a polished and reinforced thinned skull. Nat Methods 7:981–984

    Article  PubMed  CAS  Google Scholar 

  14. Feng G, Mellor RH, Bernstein M et al (2000) Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP. Neuron 28:41–51

    Article  PubMed  CAS  Google Scholar 

  15. Saito T (2006) In vivo electroporation in the embryonic mouse central nervous system. Nat Protocols 1:1552–1558

    Article  CAS  Google Scholar 

  16. Drovizhev M, Makarov NS, Tillo SE et al (2011) Two-photon absorption properties of fluorescent proteins. Nat Methods 8:393–399

    Article  Google Scholar 

Download references

Acknowledgments

S.O. is supported by Grants-in-Aid for Scientific Research (18200025, 20019013, 21220008, and 22650070), Global COE Program (Integrative Life Science Based on the Study of Biosignaling Mechanisms), and Strategic Research Program for Brain Sciences from MEXT Japan and by Takeda Science Foundation.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this protocol

Cite this protocol

Kondo, S., Okabe, S. (2013). In Vivo Two-Photon Microscopy of Microglia. In: Joseph, B., Venero, J. (eds) Microglia. Methods in Molecular Biology, vol 1041. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-520-0_28

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-520-0_28

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-519-4

  • Online ISBN: 978-1-62703-520-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics