Skip to main content

Converging Methodologies in a Mammalian “Simple System” Focused on the Biology of Memory: Conditioned Odor Preference in the Neonate Rat

  • Protocol
  • First Online:
Multidisciplinary Tools for Investigating Synaptic Plasticity

Part of the book series: Neuromethods ((NM,volume 81))

Abstract

We present here a critical period model for odor preference learning in the rat pup, which can produce short-term or lifelong changes in odor-related behaviors depending on training parameters. Features which make it a powerful tool for the analysis of memory processes are described. The chapter outlines four behavioral protocols and then provides an overview of a range of methodologies, primarily physiological, which we have used to probe the circuit changes produced by training. Each of these approaches offers different strengths for an experimental dissection of how the olfactory bulb, or any neural structure, is changed by learning. The direction they provide both supports and modifies popular hypotheses in the biology of memory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hodgkin AL, Huxley AF (1952) Propagation of electrical signals along giant nerve fibers. Proc R Soc Lond B Biol Sci 140(899):177–183

    Article  PubMed  CAS  Google Scholar 

  2. Hodgkin AL, Huxley AF (1952) The components of membrane conductance in the giant axon of Loligo. J Physiol 116(4):473–496

    PubMed  CAS  Google Scholar 

  3. Hodgkin AL, Huxley AF, Katz B (1952) Measurement of current-voltage relations in the membrane of the giant axon of Loligo. J Physiol 116(4):424–448

    PubMed  CAS  Google Scholar 

  4. McLean JH, Shipley M (1992) Neuroanatomical substrates of olfaction. Springer, New York

    Google Scholar 

  5. Xu F, Greer CA, Shepherd GM (2000) Odor maps in the olfactory bulb. J Comp Neurol 422(4):489–495

    Article  PubMed  CAS  Google Scholar 

  6. Sullivan RM, Wilson DA, Leon M (1989) Norepinephrine and learning-induced plasticity in infant rat olfactory system. J Neurosci 9(11):3998–4006

    PubMed  CAS  Google Scholar 

  7. Harley CW, Darby-King A, McCann J et al (2006) Beta1-adrenoceptor or alpha1-adrenoceptor activation initiates early odor preference learning in rat pups: support for the MC/cAMP model of odor preference learning. Learn Mem 13(1):8–13

    Article  PubMed  CAS  Google Scholar 

  8. Sullivan RM, Stackenwalt G, Nasr F et al (2000) Association of an odor with activation of olfactory bulb noradrenergic beta-receptors or locus coeruleus stimulation is sufficient to produce learned approach responses to that odor in neonatal rats. Behav Neurosci 114(5):957–962

    Article  PubMed  CAS  Google Scholar 

  9. Wilson DA, Sullivan RM (1994) Neurobiology of associative learning in the neonate: early olfactory learning. Behav Neural Biol 61(1):1–18

    Article  PubMed  CAS  Google Scholar 

  10. Yuan Q, Harley CW, McLean JH (2003) MC beta1 and 5-HT2A receptor colocalization and cAMP coregulation: a new model of norepinephrine-induced learning in the olfactory bulb. Learn Mem 10(1):5–15

    Article  PubMed  Google Scholar 

  11. Johnson BA, Woo CC, Duong H et al (1995) A learned odor evokes an enhanced Fos-like glomerular response in the olfactory bulb of young rats. Brain Res 699(2):192–200

    Article  PubMed  CAS  Google Scholar 

  12. McLean JH, Harley CW, Darby-King A et al (1999) pCREB in the neonate rat olfactory bulb is selectively and transiently increased by odor preference-conditioned training. Learn Mem 6(6):608–618

    Article  PubMed  CAS  Google Scholar 

  13. Woo CC, Coopersmith R, Leon M (1987) Localized changes in olfactory bulb morphology associated with early olfactory learning. J Comp Neurol 263(1):113–25

    Article  PubMed  CAS  Google Scholar 

  14. Yuan Q, Harley CW, McLean JH et al (2002) Optical imaging of odor preference memory in the rat olfactory bulb. J Neurophysiol 87(6):3156–3159

    PubMed  Google Scholar 

  15. Wilson RI, Mainen ZF (2006) Early events in olfactory processing. Annu Rev Neurosci 29:163–201

    Article  PubMed  CAS  Google Scholar 

  16. Rubin BD, Katz LC (1999) Optical imaging of odorant representations in the mammalian olfactory bulb. Neuron 23(3):499–511

    Article  PubMed  CAS  Google Scholar 

  17. Wachowiak M, Cohen LB (2001) Representation of odorants by receptor neuron input to the mouse olfactory bulb. Neuron 32(4):723–735

    Article  PubMed  CAS  Google Scholar 

  18. McLean JH, Harley CW (2004) Olfactory learning in the rat pup: a model that may permit visualization of a mammalian memory trace. Neuroreport 15(11):1691–1697

    Article  PubMed  CAS  Google Scholar 

  19. Cui W, Smith A, Darby-King A et al (2007) A temporal-specific and transient cAMP increase characterizes odorant classical conditioning. Learn Mem 14(3):126–133

    Article  PubMed  CAS  Google Scholar 

  20. Sullivan RM (2005) Developmental changes in olfactory behavior and limbic circuitry. Chem Senses 30(Suppl 1):i152–i153

    Article  PubMed  Google Scholar 

  21. Langdon PE, Harley CW, McLean JH (1997) Increased beta adrenoceptor activation overcomes conditioned olfactory learning deficits induced by serotonin depletion. Brain Res Dev Brain Res 102(2):291–293

    Article  PubMed  CAS  Google Scholar 

  22. Yuan Q, Harley CW, Bruce JC et al (2000) Isoproterenol increases CREB phosphorylation and ON-evoked potentials in normal and 5-HT-depleted olfactory bulbs in rat pups only at doses that produce odor preference learning. Learn Mem 7(6):413–421

    Article  PubMed  CAS  Google Scholar 

  23. Moriceau S, Shionoya K, Jakub K et al (2009) Early-life stress disrupts attachment learning: the role of amygdala corticosterone, locus ceruleus corticotropin releasing hormone, and olfactory bulb norepinephrine. J Neurosci 29(50):15745–15755

    Article  PubMed  CAS  Google Scholar 

  24. Johnson BA, Leon M (1996) Spatial distribution of (14C)2-deoxyglucose uptake in the glomerular layer of the rat olfactory bulb following early odor preference learning. J Comp Neurol 376(4):557–566

    Article  PubMed  CAS  Google Scholar 

  25. Moriceau S, Sullivan RM (2004) Corticosterone influences on mammalian neonatal sensitive-period learning. Behav Neurosci 118(2):274–281

    Article  PubMed  CAS  Google Scholar 

  26. Moriceau S, Wilson DA, Levine S et al (2006) Dual circuitry for odor-shock conditioning during infancy: corticosterone switches between fear and attraction via amygdala. J Neurosci 26(25):6736–6748

    Article  Google Scholar 

  27. Christie-Fougere MM, Darby-King A, Harley CW et al (2009) Calcineurin inhibition eliminates the normal inverted U curve, enhances acquisition and prolongs memory in a mammalian 3′-5′-cyclic AMP-dependent learning paradigm. Neuroscience 158(4):1277–1283

    Article  PubMed  CAS  Google Scholar 

  28. McLean JH, Darby-King A, Harley CW (2005) Potentiation and prolongation of long-term odor memory in neonate rats using a phosphodiesterase inhibitor. Neuroscience 135(2):329–334

    Article  PubMed  CAS  Google Scholar 

  29. Roth TL, Sullivan RM (2005) Memory of early maltreatment: neonatal behavioral and neural correlates of maternal maltreatment within the context of classical conditioning. Biol Psychiatry 57(8):823–831

    Article  PubMed  Google Scholar 

  30. Aroniadou-Anderjaska V, Ennis M, Shipley MT (1997) Glomerular synaptic responses to ON input in rat olfactory bulb slices. Neuroscience 79(2):425–434

    Article  PubMed  CAS  Google Scholar 

  31. Nicoll RA (1972) ONs and their excitatory action in the olfactory bulb. Exp Brain Res 14(2):185–197

    Article  PubMed  CAS  Google Scholar 

  32. Coppola DM, White LE, Fitzpatrick D et al (1998) Unequal representation of cardinal and oblique contours in ferret visual cortex. Proc Natl Acad Sci U S A 95(5):2621–2623

    Article  PubMed  CAS  Google Scholar 

  33. Lee MG, Manns ID, Alonso A et al (2004) Sleep-wake related discharge properties of basal forebrain neurons recorded with micropipettes in head-fixed rats. J Neurophysiol 92(2):1182–1198

    Article  PubMed  Google Scholar 

  34. Epsztein J, Brecht M, Lee AK (2011) Intracellular determinants of hippocampal CA1 place and silent cell activity in a novel environment. Neuron 70(1):109–120

    Article  PubMed  CAS  Google Scholar 

  35. Dudai Y (1999) The smell of representations. Neuron 23(4):633–635

    Article  PubMed  CAS  Google Scholar 

  36. Uchida N, Takahashi YK, Tanifuji M et al (2000) Odor maps in the mammalian olfactory bulb: domain organization and odorant structural features. Nat Neurosci 3(10):1035–1043

    Article  PubMed  CAS  Google Scholar 

  37. Meister M, Bonhoeffer T (2001) Tuning and topography in an odor map on the rat olfactory bulb. J Neurosci 21(4):1351–1360

    PubMed  CAS  Google Scholar 

  38. Yazawa I, Sasaki S, Mochida H et al (2001) Developmental changes in trial-to-trial variations in whisker barrel responses studied using intrinsic optical imaging: comparison between normal and de-whiskered rats. J Neurophysiol 86(1):392–401

    PubMed  CAS  Google Scholar 

  39. Onoda N, Mori K (1980) Depth distribution of temporal firing patterns in olfactory bulb related to air-intake cycles. J Neurophysiol 44(1):29–39

    PubMed  CAS  Google Scholar 

  40. Aghajanian GK, Rasmussen K (1989) Intracellular studies in the facial nucleus illustrating a simple new method for obtaining viable motoneurons in adult rat brain slices. Synapse 3(4):331–338

    Article  PubMed  CAS  Google Scholar 

  41. Yuan Q (2009) Theta bursts in the ON paired with beta-adrenoceptor activation induce calcium elevation in MCs: a mechanism for odor preference learning in the neonate rat. Learn Mem 16(11):676–681

    Article  PubMed  Google Scholar 

  42. Ennis M, Linster C, Aroniadou-Anderjaska V et al (1998) Glutamate and synaptic plasticity at mammalian primary olfactory synapses. Ann N Y Acad Sci 855:457–466

    Article  PubMed  CAS  Google Scholar 

  43. Jones SV, Choi DC, Davis M et al (2008) Learning-dependent structural plasticity in the adult olfactory pathway. J Neurosci 28(49):13106–13111

    Article  PubMed  CAS  Google Scholar 

  44. Mutoh H, Yuan Q, Knopfel T (2005) Long-term depression at ON synapses. J Neurosci 25(17):4252–4259

    Article  PubMed  CAS  Google Scholar 

  45. Tyler WJ, Petzold GC, Pal SK et al (2007) Experience-dependent modification of primary sensory synapses in the mammalian olfactory bulb. J Neurosci 27(35):9427–9438

    Article  PubMed  CAS  Google Scholar 

  46. Coopersmith R, Leon M (1986) Enhanced neural response by adult rats to odors experienced early in life. Brain Res 371(2):400–403

    Article  PubMed  CAS  Google Scholar 

  47. Wilson DA, Sullivan RM, Leon M (1987) Single-unit analysis of postnatal olfactory learning: modified olfactory bulb output response patterns to learned attractive odors. J Neurosci 7(10):3154–3162

    PubMed  CAS  Google Scholar 

  48. Del Castillo J, Katz B (1954) Statistical factors involved in neuromuscular facilitation and depression. J Physiol 124(3):574–585

    Google Scholar 

  49. Zucker RS (1989) Short-term synaptic plasticity. Annu Rev Neurosci 12:13–31

    Article  PubMed  CAS  Google Scholar 

  50. Mori K (1987) Membrane and synaptic properties of identified neurons in the olfactory bulb. Prog Neurobiol 29(3):275–320

    Article  PubMed  CAS  Google Scholar 

  51. Shipley MT, Ennis M (1996) Functional organization of olfactory system. J Neurobiol 30(1):123–176

    Article  PubMed  CAS  Google Scholar 

  52. Karnup SV, Hayar A, Shipley MT et al (2006) Spontaneous field potentials in the glomeruli of the olfactory bulb: the leading role of juxtaglomerular cells. Neuroscience 142(1):203–221

    Article  PubMed  CAS  Google Scholar 

  53. Cang J, Isaacson JS (2003) In vivo whole-cell recording of odor-evoked synaptic transmission in the rat olfactory bulb. J Neurosci 23(10):4108–4116

    PubMed  CAS  Google Scholar 

  54. Griff ER, Mafhouz M, Chaput MA (2008) Comparison of identified mitral and tufted cells in freely breathing rats: II. Odor-evoked responses. Chem Senses 33(9):793–802

    Article  PubMed  Google Scholar 

  55. Lethbridge R, Hou Q, Harley CW, Yuan Q (2012) Olfactory bulb glomerular NMDA receptors mediate olfactory nerve potentiation and odor preference learning in the neonate rats. PLoS One 7(4):e35024

    Article  PubMed  CAS  Google Scholar 

  56. Frank DA, Greenberg ME (1994) CREB: a mediator of long-term memory from mollusks to mammals. Cell 79(1):5–8

    Article  PubMed  CAS  Google Scholar 

  57. Stanford IM, Lacey MG (1996) Differential actions of serotonin, mediated by 5-HT1B and 5-HT2C receptors, on GABA-mediated synaptic input to rat substantia nigra pars reticulata neurons in vitro. J Neurosci 16(23):7566–7573

    PubMed  CAS  Google Scholar 

  58. Hardy A, Palouzier-Paulignan B, Duchamp A et al (2005) 5-Hydroxytryptamine action in the rat olfactory bulb: in vitro electrophysiological patch-clamp recordings of juxtaglomerular and MCs. Neuroscience 131(3):717–731

    Article  PubMed  CAS  Google Scholar 

  59. Schoppa NE, Westbrook GL (1997) Modulation of mEPSCs in olfactory bulb MCs by metabotropic glutamate receptors. J Neurophysiol 78(3):1468–1475

    PubMed  CAS  Google Scholar 

  60. Malenka RC, Nicoll RA (1999) Long-term potentiation—a decade of progress? Science 285(5435):1870–1874

    Article  PubMed  CAS  Google Scholar 

  61. Guthrie KM, Anderson AJ, Leon M et al (1993) Odor-induced increases in c-fos mRNA expression reveal an anatomical “unit” for odor processing in olfactory bulb. Proc Natl Acad Sci U S A 90(8):3329–3333

    Article  PubMed  CAS  Google Scholar 

  62. Sullivan RM, McGaugh JL, Leon M (1991) Norepinephrine-induced plasticity and one-trial olfactory learning in neonatal rats. Brain Res Dev Brain Res 60(2):219–228

    Article  PubMed  CAS  Google Scholar 

  63. McKernan MG, Shinnick-Gallagher P (1997) Fea conditioning induces a lasting potentiation of synaptic currents in vitro. Nature 390(6660):607–611

    Article  PubMed  CAS  Google Scholar 

  64. Cui W, Darby-King A, Grimes MT et al (2011) Odor preference learning and memory modify GluA1 phosphorylation and GluA1 distribution in the neonate rat olfactory bulb: testing the AMPA receptor hypothesis in an appetitive learning model. Learn Mem 18(5):283–291

    Article  PubMed  CAS  Google Scholar 

  65. Franks KM, Isaacson JS (2005) Synapse-specific downregulation of NMDA receptors by early experience: a critical period for plasticity of sensory input to olfactory cortex. Neuron 47(1):101–114

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Yuan, Q., Harley, C.W., McLean, J.H. (2013). Converging Methodologies in a Mammalian “Simple System” Focused on the Biology of Memory: Conditioned Odor Preference in the Neonate Rat. In: Nguyen, P. (eds) Multidisciplinary Tools for Investigating Synaptic Plasticity. Neuromethods, vol 81. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-517-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-517-0_11

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-516-3

  • Online ISBN: 978-1-62703-517-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics