Primary Marrow-Derived Stromal Cells: Isolation and Manipulation

  • Aravind Ramakrishnan
  • Beverly Torok-Storb
  • Manoj M. Pillai
Part of the Methods in Molecular Biology book series (MIMB, volume 1035)


Marrow stromal cells (MSCs) are relatively rare cells difficult to visualize in marrow biopsies or detect in aspirated marrow. Under specific conditions MSC can be expanded in vitro and the population can give rise to several mesenchymal lineages. “MSC” also refers to mesenchymal stem cells which implies that all cells in the population are multipotent. It is generally agreed that while there may be a few multipotent stem cells in an MSC population the majority are not stem cells. In either case MSCs do not produce hematopoietic cells. Although MSCs have been isolated and characterized from several tissues, bone marrow is their most common source for research and clinical use. Primary MSC populations can be derived from bone marrow mononuclear cells with relative ease, but it is important to recognize the cellular heterogeneity within a culture and how this may vary from donor to donor. In this chapter, we describe methodology to derive primary MSCs from bone marrow screens, an otherwise discarded by-product of bone marrow harvests used for clinical transplantation. We also describe some useful techniques to characterize and manipulate MSCs—both primary and immortalized cell lines.

Key words

Marrow stromal cells (MSCs) Bone marrow screen Reverse-transfection FACS AutoMACS CD146 siRNA miRNA Long-term culture (LTC) 



This work was supported in part by NIH grants DK073701, DK082757, HL104070, DK082783, HL099993, and DK056465, Bethesda, MD, USA.


  1. 1.
    Chabannon C, Torok-Storb B (1992) Stem cell-stromal cell interactions. Curr Top Microbiol Immunol 177:123–136PubMedCrossRefGoogle Scholar
  2. 2.
    Trentin JJ (1971) Determination of bone marrow stem cell differentiation by stromal hemopoietic inductive microenvironments (HIM). Am J Pathol 65:621–628PubMedGoogle Scholar
  3. 3.
    McCulloch EA, Siminovitch L, Till JE, Russell ES, Bernstein SE (1965) The cellular basis of the genetically determined hemopoietic defect in anemic mice of genotype sl-sld. Blood 26:399–410PubMedGoogle Scholar
  4. 4.
    Huang E, Nocka K, Beier DR, Chu TY, Buck J, Lahm HW et al (1990) The hematopoietic growth factor KL is encoded by the sl locus and is the ligand of the c-kit receptor, the gene product of the W locus. Cell 63:225–233PubMedCrossRefGoogle Scholar
  5. 5.
    Williams DE, Eisenman J, Baird A, Rauch C, Van Ness K, March CJ et al (1990) Identification of a ligand for the c-kit proto-oncogene. Cell 63:167–174PubMedCrossRefGoogle Scholar
  6. 6.
    Kiel MJ, Morrison SJ (2008) Uncertainty in the niches that maintain haematopoietic stem cells. Nat Rev Immunol 8:290–301PubMedCrossRefGoogle Scholar
  7. 7.
    Ara T, Tokoyoda K, Sugiyama T, Egawa T, Kawabata K, Nagasawa T (2003) Long-term hematopoietic stem cells require stromal cell-derived factor-1 for colonizing bone marrow during ontogeny. Immunity 19:257–267PubMedCrossRefGoogle Scholar
  8. 8.
    Barker JE (1994) Sl/Sld hematopoietic progenitors are deficient in situ. Exp Hematol 22:174–177PubMedGoogle Scholar
  9. 9.
    Sugiyama T, Kohara H, Noda M, Nagasawa T (2006) Maintenance of the hematopoietic stem cell pool by CXCL12-CXCR4 chemokine signaling in bone marrow stromal cell niches. Immunity 25:977–988PubMedCrossRefGoogle Scholar
  10. 10.
    Calvi LM, Adams GB, Weibrecht KW, Weber JM, Olson DP, Knight MC et al (2003) Osteoblastic cells regulate the haematopoietic stem cell niche. Nature 425:841–846PubMedCrossRefGoogle Scholar
  11. 11.
    Arai F, Hirao A, Ohmura M, Sato H, Matsuoka S, Takubo K et al (2004) Tie2/angiopoietin-1 signaling regulates hematopoietic stem cell quiescence in the bone marrow niche. Cell 118:149–161PubMedCrossRefGoogle Scholar
  12. 12.
    Nagasawa T (2000) A chemokine, SDF-1/PBSF, and its receptor, CXC chemokine receptor 4, as mediators of hematopoiesis. Int J Hematol 72:408–411PubMedGoogle Scholar
  13. 13.
    Mancini SJ, Mantei N, Dumortier A, Suter U, MacDonald HR, Radtke F (2005) Jagged1-dependent notch signaling is dispensable for hematopoietic stem cell self-renewal and differentiation. Blood 105:2340–2342PubMedCrossRefGoogle Scholar
  14. 14.
    Cobas M, Wilson A, Ernst B, Mancini SJ, MacDonald HR, Kemler R et al (2004) Beta-catenin is dispensable for hematopoiesis and lymphopoiesis. J Exp Med 199:221–229PubMedCrossRefGoogle Scholar
  15. 15.
    Ding L, Saunders TL, Enikolopov G, Morrison SJ (2012) Endothelial and perivascular cells maintain haematopoietic stem cells. Nature 481:457–462PubMedCrossRefGoogle Scholar
  16. 16.
    Ramakrishnan A, Torok-Storb BJ (2010) The role of the marrow microenvironment in hematopoietic stem cell transplantation. Cell Ther Transplant 2:7–12PubMedGoogle Scholar
  17. 17.
    Sacchetti B, Funari A, Michienzi S, Di Cesare S, Piersanti S, Saggio I et al (2007) Self-renewing osteoprogenitors in bone marrow sinusoids can organize a hematopoietic microenvironment. Cell 131:324–336PubMedCrossRefGoogle Scholar
  18. 18.
    Mendez-Ferrer S, Michurina TV, Ferraro F, Mazloom AR, Macarthur BD, Lira SA et al (2010) Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature 466:829–834PubMedCrossRefGoogle Scholar
  19. 19.
    Park D, Spencer JA, Koh BI, Kobayashi T, Fujisaki J, Clemens TL et al (2012) Endogenous bone marrow MSCs are dynamic, fate-restricted participants in bone maintenance and regeneration. Cell Stem Cell 10:259–272PubMedCrossRefGoogle Scholar
  20. 20.
    Dexter TM, Allen TD, Lajtha LG (1977) Conditions controlling the proliferation of haemopoietic stem cells in vitro. J Cell Physiol 91:335–344PubMedCrossRefGoogle Scholar
  21. 21.
    Caplan AI (1991) Mesenchymal stem cells. J Orthop Res 9:641–650PubMedCrossRefGoogle Scholar
  22. 22.
    Le Blanc K, Frassoni F, Ball L, Locatelli F, Roelofs H, Lewis I et al (2008) Mesenchymal stem cells for treatment of steroid-resistant, severe, acute graft-versus-host disease: a phase II study. Lancet 371:1579–1586PubMedCrossRefGoogle Scholar
  23. 23.
    Schwartz RE, Reyes M, Koodie L, Jiang Y, Blackstad M, Lund T et al (2002) Multipotent adult progenitor cells from bone marrow differentiate into functional hepatocyte-like cells. J Clin Invest 109:1291–1302PubMedGoogle Scholar
  24. 24.
    Toma C, Pittenger MF, Cahill KS, Byrne BJ, Kessler PD (2002) Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart. Circulation 105:93–98PubMedCrossRefGoogle Scholar
  25. 25.
    English K, French A, Wood KJ (2010) Mesenchymal stromal cells: facilitators of successful transplantation? Cell Stem Cell 7:431–442PubMedCrossRefGoogle Scholar
  26. 26.
    Allison M (2009) Genzyme backs osiris, despite prochymal flop. Nat Biotechnol 27:966–967PubMedCrossRefGoogle Scholar
  27. 27.
    Ranganath SH, Levy O, Inamdar MS, Karp JM (2012) Harnessing the mesenchymal stem cell secretome for the treatment of cardiovascular disease. Cell Stem Cell 10:244–258PubMedCrossRefGoogle Scholar
  28. 28.
    Yang X, Balakrishnan I, Torok-Storb B, Pillai MM (2012) Marrow stromal cell infusion rescues hematopoiesis in lethally irradiated mice despite rapid clearance after infusion. 2012:142530. doi:  10.1155/2012/142530. Epub 2012 Feb 16
  29. 29.
    Reyes M, Verfaillie CM (2001) Characterization of multipotent adult progenitor cells, a subpopulation of mesenchymal stem cells. Ann N Y Acad Sci 938:231–233, discussion 233–235PubMedCrossRefGoogle Scholar
  30. 30.
    Jiang Y, Vaessen B, Lenvik T, Blackstad M, Reyes M, Verfaillie CM (2002) Multipotent progenitor cells can be isolated from postnatal murine bone marrow, muscle, and brain. Exp Hematol 30:896–904PubMedCrossRefGoogle Scholar
  31. 31.
    Jiang Y, Jahagirdar BN, Reinhardt RL, Schwartz RE, Keene CD, Ortiz-Gonzalez XR et al (2002) Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 418:41–49PubMedCrossRefGoogle Scholar
  32. 32.
    Check E (2007) Stem cells: the hard copy. Nature 446:485–486PubMedCrossRefGoogle Scholar
  33. 33.
    Ying QL, Nichols J, Evans EP, Smith AG (2002) Changing potency by spontaneous fusion. Nature 416:545–548PubMedCrossRefGoogle Scholar
  34. 34.
    Terada N, Hamazaki T, Oka M, Hoki M, Mastalerz DM, Nakano Y et al (2002) Bone marrow cells adopt the phenotype of other cells by spontaneous cell fusion. Nature 416:542–545PubMedCrossRefGoogle Scholar
  35. 35.
    Laflamme MA, Murry CE (2011) Heart regeneration. Nature 473:326–335PubMedCrossRefGoogle Scholar
  36. 36.
    Graf T (2011) Historical origins of transdifferentiation and reprogramming. Cell Stem Cell 9:504–516PubMedCrossRefGoogle Scholar
  37. 37.
    Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K et al (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:861–872PubMedCrossRefGoogle Scholar
  38. 38.
    Bianco P, Robey PG, Simmons PJ (2008) Mesenchymal stem cells: revisiting history, concepts, and assays. Cell Stem Cell 2:313–319PubMedCrossRefGoogle Scholar
  39. 39.
    Friedenstein AJ, Chailakhyan RK, Latsinik NV, Panasyuk AF, Keiliss-Borok IV (1974) Stromal cells responsible for transferring the microenvironment of the hemopoietic tissues. Cloning in vitro and retransplantation in vivo. Transplantation 17:331–340PubMedCrossRefGoogle Scholar
  40. 40.
    Friedenstein AJ, Deriglasova UF, Kulagina NN, Panasuk AF, Rudakowa SF, Luria EA et al (1974) Precursors for fibroblasts in different populations of hematopoietic cells as detected by the in vitro colony assay method. Exp Hematol 2:83–92PubMedGoogle Scholar
  41. 41.
    Simmons PJ, Torok-Storb B (1991) Identification of stromal cell precursors in human bone marrow by a novel monoclonal antibody, STRO-1. Blood 78:55–62PubMedGoogle Scholar
  42. 42.
    Deschaseaux F, Charbord P (2000) Human marrow stromal precursors are alpha 1 integrin subunit-positive. J Cell Physiol 184:319–325PubMedCrossRefGoogle Scholar
  43. 43.
    Stewart K, Monk P, Walsh S, Jefferiss CM, Letchford J, Beresford JN (2003) STRO-1, HOP-26 (CD63), CD49a and SB-10 (CD166) as markers of primitive human marrow stromal cells and their more differentiated progeny: a comparative investigation in vitro. Cell Tissue Res 313:281–290PubMedCrossRefGoogle Scholar
  44. 44.
    Bianco P, Riminucci M, Gronthos S, Robey PG (2001) Bone marrow stromal stem cells: nature, biology, and potential applications. Stem Cells 19:180–192PubMedCrossRefGoogle Scholar
  45. 45.
    Majumdar MK, Banks V, Peluso DP, Morris EA (2000) Isolation, characterization, and chondrogenic potential of human bone marrow-derived multipotential stromal cells. J Cell Physiol 185:98–106PubMedCrossRefGoogle Scholar
  46. 46.
    Gronthos S, Zannettino AC, Hay SJ, Shi S, Graves SE, Kortesidis A et al (2003) Molecular and cellular characterisation of highly purified stromal stem cells derived from human bone marrow. J Cell Sci 116:1827–1835PubMedCrossRefGoogle Scholar
  47. 47.
    Buhring HJ, Battula VL, Treml S, Schewe B, Kanz L, Vogel W (2007) Novel markers for the prospective isolation of human MSC. Ann N Y Acad Sci 1106:262–271PubMedCrossRefGoogle Scholar
  48. 48.
    Pillai MM, Yang X, Balakrishnan I, Bemis L, Torok-Storb B (2010) MiR-886-3p down regulates CXCL12 (SDF1) expression in human marrow stromal cells. PLoS One 5:e14304PubMedCrossRefGoogle Scholar
  49. 49.
    Randolph-Habecker J, Iwata M, Torok-Storb B (2002) Cytomegalovirus mediated myelosuppression. J Clin Virol 25(Suppl 2):S51–S56PubMedCrossRefGoogle Scholar
  50. 50.
    Roecklein BA, Torok-Storb B (1995) Functionally distinct human marrow stromal cell lines immortalized by transduction with the human papilloma virus E6/E7 genes. Blood 85:997–1005PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2013

Authors and Affiliations

  • Aravind Ramakrishnan
    • 1
  • Beverly Torok-Storb
    • 1
  • Manoj M. Pillai
    • 2
  1. 1.Clinical Research DivisionFred Hutchinson Cancer Research CenterSeattleUSA
  2. 2.Division of Medical OncologyUniversity of Colorado Anschutz Medical CampusAuroraUSA

Personalised recommendations