Genetic, Immunofluorescence Labeling, and In Situ Hybridization Techniques in Identification of Stem Cells in Male and Female Germline Niches

  • Shree Ram Singh
  • Ying Liu
  • Madhuri Kango-Singh
  • Eviatar Nevo
Part of the Methods in Molecular Biology book series (MIMB, volume 1035)


Stem cells have an enormous capacity of self-renewal, as well as the ability to differentiate into specialized cell types. Proper control of these two properties of stem cells is crucial for animal development, growth control, and reproduction. Germline stem cells (GSCs) are a self-renewing population of germ cells, which generate haploid gametes (sperms or oocyte) that transmit genetic information from generation to generation. In Drosophila testis and ovary, GSCs are anchored around the niche cells. The cap cells cluster in females and hub cells in males act as a niche to control GSC behavior. With highly sophisticated genetic techniques in Drosophila, tremendous progress has been made in understanding the interactions between stem cells and niches at cellular and molecular levels. Here, we provide details of genetic, immunofluorescence labeling, and in situ hybridization techniques in identification and characterization of stem cells in Drosophila male and female germline niches.

Key words

Drosophila Testis Ovary Germline stem cells Niches 



M.K.S. is supported by the Knight’s Templar Eye Foundation and start-up support from the University of Dayton, OH. We thank Robin Permut for editing the manuscript.


  1. 1.
    Morrison SJ, Spradling AC (2008) Stem cells and niches: mechanisms that promote stem cell maintenance throughout life. Cell 132:598–611PubMedCrossRefGoogle Scholar
  2. 2.
    Singh SR, Chen X, Hou SX (2005) JAK/STAT signaling regulates tissue outgrowth and male germline stem cell fate in Drosophila. Cell Res 15:1–5PubMedCrossRefGoogle Scholar
  3. 3.
    Singh SR, Zhen W, Zheng Z, Wang H, Oh SW, Liu W, Zbar B, Schmidt LS, Hou SX (2006) The Drosophila homolog of the human tumor suppressor gene BHD interacts with the JAK-STAT and Dpp signaling pathways in regulating male germline stem cell maintenance. Oncogene 25:5933–5941PubMedCrossRefGoogle Scholar
  4. 4.
    Singh SR, Liu W, Hou SX (2007) The adult Drosophila malpighian tubules are maintained by multipotent stem cells. Cell Stem Cell 1:191–203PubMedCrossRefGoogle Scholar
  5. 5.
    Reya T, Morrison SJ, Clarke MF, Weissman IL (2001) Stem cells, cancer, and cancer stem cells. Nature 414:105–111PubMedCrossRefGoogle Scholar
  6. 6.
    Wang H, Singh SR, Zheng Z, Oh SW, Chen X, Edwards K, Hou SX (2006) Rap-GEF signaling controls stem cell anchoring to their niche through regulating DE-cadherin-mediated cell adhesion in the Drosophila testis. Dev Cell 10:117–126PubMedCrossRefGoogle Scholar
  7. 7.
    Wilson E (1896) The cell in development and inheritance. Macmillan, New YorkCrossRefGoogle Scholar
  8. 8.
    Nishimiya-Fujisawa C, Sugiyama T (1993) Genetic analysis of developmental mechanisms in hydra. XX. Cloning of interstitial stem cells restricted to the sperm differentiation pathway in Hydra magnipapillata. Dev Biol 157:1–9PubMedCrossRefGoogle Scholar
  9. 9.
    Lin H, Spradling AC (1993) Germline stem cell division and egg chamber development in transplanted Drosophila germaria. Dev Biol 159:140–152PubMedCrossRefGoogle Scholar
  10. 10.
    Hou SX, Singh SR (2008) Germline stem cells. Methods Mol Biol, 450, Humana Press, Totowa, NJGoogle Scholar
  11. 11.
    Gilboa L, Lehmann R (2004) How different is Venus from Mars? The genetics of germ-line stem cells in Drosophila females and males. Development 131:4895–4905PubMedCrossRefGoogle Scholar
  12. 12.
    Yamashita YM, Mahowald AP, Perlin JR, Fuller MT (2007) Asymmetric inheritance of mother versus daughter centrosome in stem cell division. Science 315:518–521PubMedCrossRefGoogle Scholar
  13. 13.
    Cheng J, Türkel N, Hemati N, Fuller MT, Hunt AJ, Yamashita YM (2008) Centrosome misorientation reduces stem cell division during ageing. Nature 456:599–604PubMedCrossRefGoogle Scholar
  14. 14.
    Sheng XR, Brawley CM, Matunis EL (2009) Dedifferentiating spermatogonia outcompete somatic stem cells for niche occupancy in the Drosophila testis. Cell Stem Cell 5:191–203PubMedCrossRefGoogle Scholar
  15. 15.
    Gönczy P, DiNardo S (1996) The germ line regulates somatic cyst cell proliferation and fate during Drosophila spermatogenesis. Development 122:2437–2447PubMedGoogle Scholar
  16. 16.
    Hardy RW, Tokuyasu KT, Lindsley DL, Garavito M (1979) The germinal proliferation center in the testis of Drosophila melanogaster. J Ultrastruct Res 69:180–190PubMedCrossRefGoogle Scholar
  17. 17.
    Fuller MT, Spradling AC (2007) Male and female Drosophila germline stem cells: two versions of immortality. Science 316:402–404PubMedCrossRefGoogle Scholar
  18. 18.
    Yamashita YM, Jones DL, Fuller MT (2003) Orientation of asymmetric stem cell division by the APC tumor suppressor and centrosome. Science 301:1547–1550PubMedCrossRefGoogle Scholar
  19. 19.
    Yamashita YM, Fuller MT (2008) Asymmetric centrosome behavior and the mechanisms of stem cell division. J Cell Biol 180:61–66CrossRefGoogle Scholar
  20. 20.
    Voog J, D'Alterio C, Jones DL (2008) Multipotent somatic stem cells contribute to the stem cell niche in the Drosophila testis. Nature 454:1132–1136PubMedCrossRefGoogle Scholar
  21. 21.
    Kiger AA, Jones DL, Schulz C, Rogers MB, Fuller MT (2001) Stem cell self-renewal specified by JAK-STAT activation in response to a support cell cue. Science 294:2542–2545PubMedCrossRefGoogle Scholar
  22. 22.
    Tulina N, Matunis E (2001) Control of stem cell self-renewal in Drosophila spermatogenesis by JAK-STAT signaling. Science 294:2546–2549PubMedCrossRefGoogle Scholar
  23. 23.
    Brawley C, Matunis E (2004) Regeneration of male germline stem cells by spermatogonial dedifferentiation in vivo. Science 304:1331–1334PubMedCrossRefGoogle Scholar
  24. 24.
    Schulz C, Kiger AA, Tazuke SI, Yamashita YM, Pantalena-Filho LC, Jones DL, Wood CG, Fuller MT (2004) A misexpression screen reveals effects of bag-of-marbles and TGF beta class signaling on the Drosophila male germ-line stem cell lineage. Genetics 167:707–723PubMedCrossRefGoogle Scholar
  25. 25.
    Sarkar A, Parikh N, Hearn SA, Fuller MT, Tazuke SI, Schulz C (2007) Antagonistic roles of Rac and Rho in organizing the germ cell microenvironment. Curr Biol 17:1253–1258PubMedCrossRefGoogle Scholar
  26. 26.
    Kiger AA, White-Cooper H, Fuller MT (2000) Somatic support cells restrict germline stem cell self-renewal and promote differentiation. Nature 407:750–754PubMedCrossRefGoogle Scholar
  27. 27.
    Tran J, Brenner TJ, DiNardo S (2000) Somatic control over the germline stem cell lineage during Drosophila spermatogenesis. Nature 407:754–757PubMedCrossRefGoogle Scholar
  28. 28.
    Shivdasani AA, Ingham PW (2003) Regulation of stem cell maintenance and transit amplifying cell proliferation by TGF-beta signaling in Drosophila spermatogenesis. Curr Biol 13:2065–2072PubMedCrossRefGoogle Scholar
  29. 29.
    Bunt SM, Hime GR (2004) Ectopic activation of Dpp signalling in the male Drosophila germline inhibits germ cell differentiation. Genesis 39:84–93PubMedCrossRefGoogle Scholar
  30. 30.
    Kawase E, Wong MD, Ding BC, Xie T (2004) Gbb/Bmp signaling is essential for maintaining germline stem cells and for repressing bam transcription in the Drosophila testis. Development 131:1365–1375PubMedCrossRefGoogle Scholar
  31. 31.
    Schulz C, Wood CG, Jones DL, Tazuke SI, Fuller MT (2002) Signaling from germ cells mediated by the rhomboid homolog stet organizes encapsulation by somatic support cells. Development 129:4523–4534PubMedGoogle Scholar
  32. 32.
    Leatherman JL, Dinardo S (2008) Zfh-1 controls somatic stem cell self-renewal in the Drosophila testis and nonautonomously influences germline stem cell self-renewal. Cell Stem Cell 3:44–54PubMedCrossRefGoogle Scholar
  33. 33.
    Singh SR, Zheng Z, Wang H, Oh SW, Chen X, Hou SX (2010) Competitiveness for the niche and mutual dependence of the germline and somatic stem cells in the Drosophila testis are regulated by the JAK/STAT signaling. J Cell Physiol 223:500–510PubMedGoogle Scholar
  34. 34.
    Toledano H, D’Alterio C, Czech B, Levine E, Jones DL (2012) The let-7-Imp axis regulates ageing of the Drosophila testis stem-cell niche. Nature 485:605–610PubMedCrossRefGoogle Scholar
  35. 35.
    Srinivasan S, Mahowald AP, Fuller MT (2012) The receptor tyrosine phosphatase Lar regulates adhesion between Drosophila male germline stem cells and the niche. Development 139:1381–1390PubMedCrossRefGoogle Scholar
  36. 36.
    Monk AC, Siddall NA, Fraser B, McLaughlin EA, Hime GR (2011) Differential roles of HOW in male and female Drosophila germline differentiation. PLoS One 6(12):e28508PubMedCrossRefGoogle Scholar
  37. 37.
    Inaba M, Yuan H, Yamashita YM (2011) String (Cdc25) regulates stem cell maintenance, proliferation and aging in Drosophila testis. Development 138:5079–5086PubMedCrossRefGoogle Scholar
  38. 38.
    Casper AL, Baxter K, Van Doren M (2011) No child left behind encodes a novel chromatin factor required for germline stem cell maintenance in males but not females. Development 138:3357–3366PubMedCrossRefGoogle Scholar
  39. 39.
    Zheng Q, Wang Y, Vargas E, DiNardo S (2011) magu is required for germline stem cell self-renewal through BMP signaling in the Drosophila testis. Dev Biol 357:202–210PubMedCrossRefGoogle Scholar
  40. 40.
    Dinardo S, Okegbe T, Wingert L, Freilich S, Terry N (2011) Lines and bowl affect the specification of cyst stem cells and niche cells in the Drosophila testis. Development 138:1687–1696PubMedCrossRefGoogle Scholar
  41. 41.
    Leatherman JL, Dinardo S (2010) Germline self-renewal requires cyst stem cells and stat regulates niche adhesion in Drosophila testes. Nat Cell Biol 12:806–811PubMedCrossRefGoogle Scholar
  42. 42.
    Cherry CM, Matunis EL (2010) Epigenetic regulation of stem cell maintenance in the Drosophila testis via the nucleosome-remodeling factor NURF. Cell Stem Cell 6:557–567PubMedCrossRefGoogle Scholar
  43. 43.
    Xie T, Spradling AC (2000) A niche maintaining germ line stem cells in the Drosophila ovary. Science 290:328–330PubMedCrossRefGoogle Scholar
  44. 44.
    Song X, Xie T (2002) DE-cadherin-mediated cell adhesion is essential for maintaining somatic stem cells in the Drosophila ovary. Proc Natl Acad Sci USA 99:14813–14818PubMedCrossRefGoogle Scholar
  45. 45.
    Song X, Call GB, Kirilly D, Xie T (2007) Notch signaling controls germline stem cell niche formation in the Drosophila ovary. Development 134:1071–1080PubMedCrossRefGoogle Scholar
  46. 46.
    Xie T, Spradling AC (1998) Decapentaplegic is essential for the maintenance and division of germline stem cells in the Drosophila ovary. Cell 94:251–260PubMedCrossRefGoogle Scholar
  47. 47.
    Liu N, Han H, Lasko P (2009) Vasa promotes Drosophila germline stem cell differentiation by activating mei-P26 translation by directly interacting with a (U)-rich motif in its 3′ UTR. Genes Dev 23:2742–2752PubMedCrossRefGoogle Scholar
  48. 48.
    Shen R, Weng C, Yu J, Xie T (2009) eIF4A controls germline stem cell self-renewal by directly inhibiting BAM function in the Drosophila ovary. Proc Natl Acad Sci USA 106:11623–11628PubMedCrossRefGoogle Scholar
  49. 49.
    Wang L, Li Z, Cai Y (2008) The JAK/STAT pathway positively regulates DPP signaling in the Drosophila germline stem cell niche. J Cell Biol 180:721–728PubMedCrossRefGoogle Scholar
  50. 50.
    Decotto E, Spradling AC (2005) The Drosophila ovarian and testis stem cell niches: similar somatic stem cells and signals. Dev Cell 9:501–510PubMedCrossRefGoogle Scholar
  51. 51.
    Nystul T, Spradling A (2007) An epithelial niche in the Drosophila ovary undergoes long-range stem cell replacement. Cell Stem Cell 1:277–285PubMedCrossRefGoogle Scholar
  52. 52.
    Lu W, Casanueva MO, Mahowald AP, Kato M, Lauterbach D, Ferguson EL (2012) Niche-associated activation of rac promotes the asymmetric division of Drosophila female germline stem cells. PLoS Biol 10(7):e1001357PubMedCrossRefGoogle Scholar
  53. 53.
    Rojas-Ríos P, Guerrero I, González-Reyes A (2012) Cytoneme-mediated delivery of hedgehog regulates the expression of bone morphogenetic proteins to maintain germline stem cells in Drosophila. PLoS Biol 10(4):e1001298PubMedCrossRefGoogle Scholar
  54. 54.
    Li Y, Maines JZ, Tastan OY, McKearin DM, Buszczak M (2012) Mei-P26 regulates the maintenance of ovarian germline stem cells by promoting BMP signaling. Development 139:1547–1556PubMedCrossRefGoogle Scholar
  55. 55.
    Xing Y, Kurtz I, Thuparani M, Legard J, Ruohola-Baker H (2012) Loss-of-function screen reveals novel regulators required for Drosophila germline stem cell self-renewal. (G3) Bethesda 2:343–351CrossRefGoogle Scholar
  56. 56.
    Wang X, Pan L, Wang S, Zhou J, McDowell W, Park J, Haug J, Staehling K, Tang H, Xie T (2011) Histone H3K9 trimethylase eggless controls germline stem cell maintenance and differentiation. PLoS Genet 7(12):e1002426PubMedCrossRefGoogle Scholar
  57. 57.
    König A, Yatsenko AS, Weiss M, Shcherbata HR (2011) Ecdysteroids affect Drosophila ovarian stem cell niche formation and early germline differentiation. EMBO J 30:1549–1562PubMedCrossRefGoogle Scholar
  58. 58.
    Harris RE, Pargett M, Sutcliffe C, Umulis D, Ashe HL (2011) Brat promotes stem cell differentiation via control of a bistable switch that restricts BMP signaling. Dev Cell 20:72–83PubMedCrossRefGoogle Scholar
  59. 59.
    Xia L, Jia S, Huang S, Wang H, Zhu Y, Mu Y, Kan L, Zheng W, Wu D, Li X, Sun Q, Meng A, Chen D (2010) The Fused/Smurf complex controls the fate of Drosophila germline stem cells by generating a gradient BMP response. Cell 143:978–990PubMedCrossRefGoogle Scholar
  60. 60.
    Singh SR, Hou SX (2008) Immunohistological techniques for studying the Drosophila male germline stem cell. Methods Mol Biol 450:45–59PubMedCrossRefGoogle Scholar
  61. 61.
    Lee T, Luo L (2001) Mosaic analysis with a repressible cell marker (MARCM) for Drosophila neural development. Trends Neurosci 24:251–254PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2013

Authors and Affiliations

  • Shree Ram Singh
    • 1
  • Ying Liu
    • 1
  • Madhuri Kango-Singh
    • 2
  • Eviatar Nevo
    • 3
  1. 1.Mouse Cancer Genetics ProgramNational Cancer Institute, NIHFrederickUSA
  2. 2.Department of Biology, Center for Tissue Regeneration and Engineering at Dayton (TREND)University of DaytonDaytonUSA
  3. 3.Institute of EvolutionUniversity of HaifaHaifaIsrael

Personalised recommendations