Skip to main content

Human and Murine Skeletal Muscle Reserve Cells

  • Protocol
  • First Online:
Stem Cell Niche

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1035))

Abstract

Study of stem cell phenotype and functions requires their proper isolation. Stem cells isolated from skeletal muscle are a useful tool to explore molecular pathways involved in the regulation of myogenesis. Among progenitor cells, a subset of cells, called reserve cells, has been identified, in vitro, in myogenic cell cultures. This subset of cells remains undifferentiated while the main population of progenitor cells commits to terminal myogenic differentiation. When replated, these reserve cells grow as new colonies of progenitors. At the time of differentiation, they reform both differentiated myotubes and undifferentiated reserve cells. Here, we present a protocol to obtain and further isolate reserve cells from both human and murine myogenic cell cultures, together with techniques to analyze their cell cycle status.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zammit PS (2008) All muscle satellite cells are equal, but are some more equal than others? J Cell Sci 121:2975–2982

    Article  PubMed  CAS  Google Scholar 

  2. Le Grand F, Rudnicki MA (2007) Skeletal muscle satellite cells and adult myogenesis. Curr Opin Cell Biol 19:628–633

    Article  PubMed  Google Scholar 

  3. Tedesco FS, Dellavalle A, Diaz-Manera J et al (2010) Repairing skeletal muscle: regenerative potential of skeletal muscle stem cells. J Clin Invest 120:11–19

    Article  PubMed  CAS  Google Scholar 

  4. Bischoff R, Holtzer H (1969) Mitosis and the processes of differentiation of myogenic cells in vitro. J Cell Biol 41:188–200

    Article  PubMed  CAS  Google Scholar 

  5. Buckingham ME, Caput D, Cohen A et al (1974) The synthesis and stability of cytoplasmic messenger RNA during myoblast differentiation in culture. Proc Natl Acad Sci USA 71:1466–1470

    Article  PubMed  CAS  Google Scholar 

  6. Yoshida N, Yoshida S, Koishi K et al (1998) Cell heterogeneity upon myogenic differentiation: down-regulation of MyoD and Myf-5 generates “reserve cells”. J Cell Sci 111:769–779

    PubMed  CAS  Google Scholar 

  7. Baroffio A, Bochaton-Piallat ML, Gabbiani G et al (1995) Heterogeneity in the progeny of single human muscle satellite cells. Differentiation 59:259–268

    Article  PubMed  CAS  Google Scholar 

  8. Carnac G, Fajas L, L’Honore A et al (2000) The retinoblastoma-like protein p130 is involved in the determination of reserve cells in differentiating myoblasts. Curr Biol 10:543–546

    Article  PubMed  CAS  Google Scholar 

  9. Friday BB, Pavlath GK (2001) A calcineurin- and NFAT-dependent pathway regulates Myf5 gene expression in skeletal muscle reserve cells. J Cell Sci 114:303–310

    PubMed  CAS  Google Scholar 

  10. Kitzmann M, Carnac G, Vandromme M et al (1998) The muscle regulatory factors MyoD and myf-5 undergo distinct cell cycle-specific expression in muscle cells. J Cell Biol 142:1447–1459

    Article  PubMed  CAS  Google Scholar 

  11. Beauchamp JR, Heslop L, Yu DS et al (2000) Expression of CD34 and Myf5 defines the majority of quiescent adult skeletal muscle satellite cells. J Cell Biol 151:1221–1234

    Article  PubMed  CAS  Google Scholar 

  12. Abou-Khalil R, Le Grand F, Pallafacchina G et al (2009) Autocrine and paracrine Angiopoietin 1/Tie-2 signalling promotes muscle satellite cell self-renewal. Cell Stem Cell 5:298–309

    Article  PubMed  CAS  Google Scholar 

  13. Brack AS, Conboy IM, Conboy MJ et al (2008) A temporal switch from notch to wnt signaling in muscle stem cells is necessary for normal adult myogenesis. Cell Stem Cell 2:50–59

    Article  PubMed  CAS  Google Scholar 

  14. Le Grand F, Jones AE, Seale V et al (2009) Wnt7a activates the planar cell polarity pathway to drive the symmetric expansion of satellite stem cells. Cell Stem Cell 4:535–547

    Article  PubMed  Google Scholar 

  15. Kitzmann M, Bonnieu A, Duret C et al (2006) Inhibition of Notch signaling induces myotube hypertrophy by recruiting a subpopulation of reserve cells. J Cell Physiol 208:538–548

    Article  PubMed  CAS  Google Scholar 

  16. Crissman HA, Darzynkiewicz Z, Tobey RA et al (1985) Correlated measurements of DNA, RNA, and protein in individual cells by flow cytometry. Science 228:1321–1324

    Article  PubMed  CAS  Google Scholar 

  17. Darzynkiewicz Z, Crissman H, Jacobberger JW (2004) Cytometry of the cell cycle: cycling through history. Cytometry A 58:21–32

    Article  PubMed  Google Scholar 

  18. Chazaud B, Sonnet C, Lafuste P et al (2003) Satellite cells attract monocytes and use macrophages as a support to escape apoptosis and enhance muscle growth. J Cell Biol 163:1133–1143

    Article  PubMed  CAS  Google Scholar 

  19. Collins CA, Zammit PS (2009) Isolation and grafting of single muscle fibres. Methods Mol Biol 482:319–330

    Article  PubMed  CAS  Google Scholar 

  20. Pasut A, Oleynik P, Rudnicki MA (2012) Isolation of muscle stem cells by fluorescence activated cell sorting cytometry. Methods Mol Biol 798:53–64

    Article  PubMed  CAS  Google Scholar 

  21. Guthridge M, Wilson M, Cowling J et al (1992) The role of basic fibroblast growth factor in skeletal muscle regeneration. Growth Factors 6:53–63

    Article  PubMed  CAS  Google Scholar 

  22. Zammit PS, Relaix F, Nagata Y et al (2006) Pax7 and myogenic progression in skeletal muscle satellite cells. J Cell Sci 119:1824–1832

    Article  PubMed  CAS  Google Scholar 

  23. Endo K, Mizuguchi M, Harata A et al (2010) Nocodazole induces mitotic cell death with apoptotic-like features in Saccharomyces cerevisiae. FEBS Lett 584:2387–2392

    Article  PubMed  CAS  Google Scholar 

  24. Miller-Faures A, Michel N, Aguilera A et al (1981) Laser flow cytofluorometric analysis of HTC cells synchronized with hydroxyurea, nocodazole and aphidicolin. Cell Tissue Kinet 14:501–514

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Jyotsna Dhawan for her advices concerning the synchronization of myogenic cell cultures. We thank Marie-Claude Gendron for the setting up of the flow cytometry analysis of Pyronin/Hoechst staining.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Abou-Khalil, R., Le Grand, F., Chazaud, B. (2013). Human and Murine Skeletal Muscle Reserve Cells. In: Turksen, K. (eds) Stem Cell Niche. Methods in Molecular Biology, vol 1035. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-508-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-508-8_14

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-507-1

  • Online ISBN: 978-1-62703-508-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics