Skip to main content

Cell Mediated Rejection

  • Protocol
  • First Online:
Transplantation Immunology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1034))

Abstract

Rejection is the major barrier to successful transplantation and usually results from the integration of multiple mechanisms. Activation of elements of the innate immune system, triggered as a consequence of tissue injury sustained during cell isolation or organ retrieval as well as ischemia–reperfusion, will initiate and amplify the adaptive response. For cell mediated rejection, T cells require multiple signals for activation, the minimum being two signals; antigen recognition and costimulation. The majority of B cells require help from T cells to initiate alloantibody production. Antibodies reactive to donor HLA molecules, minor histocompatibility antigens, endothelial cells, red blood cells, or autoantigens can trigger or contribute to rejection early as well as late after transplantation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pallet N, Fougeray S, Beaune P, Legendre C, Thervet E, Anglicheau D (2009) Endoplasmic reticulum stress: an unrecognized actor in solid organ transplantation. Transplantation 88(5):605–613. doi:10.1097/TP.0b013e3181b22cec

    Article  PubMed  Google Scholar 

  2. Mühlberger I, Perco P, Fechete R, Mayer B, Oberbauer R (2009) Biomarkers in renal transplantation ischemia reperfusion injury. Transplantation 88(3S):S14–S19. doi:10.1097/TP.0b013e3181af65b5

    Article  PubMed  Google Scholar 

  3. Famulski KS, Broderick G, Einecke G, Hay K, Cruz J, Sis B et al (2007) Transcriptome analysis reveals heterogeneity in the injury response of kidney transplants. Am J Transplant 7(11):2483–2495

    Article  PubMed  CAS  Google Scholar 

  4. Kim IK, Bedi DS, Denecke C, Ge X, Tullius SG (2008) Impact of innate and adaptive immunity on rejection and tolerance. Transplantation 86(7):889–894. doi:10.1097/TP.0b013e318186ac4a

    Article  PubMed  CAS  Google Scholar 

  5. Wilhelm MJ, Pratschke J, Beato F, Taal M, Kusaka M, Hancock WW et al (2000) Activation of the heart by donor brain death accelerates acute rejection after transplantation. Circulation 102(19):2426–2433

    Article  PubMed  CAS  Google Scholar 

  6. Ogura Y, Sutterwala FS, Flavell RA (2006) The inflammasome: first line of the immune response to cell stress. Cell 126(4):659–662

    Article  PubMed  CAS  Google Scholar 

  7. Carvalho-Gaspar M, Billing JS, Spriewald BM, Wood KJ (2005) Chemokine gene expression during allograft rejection: comparison of two quantitative PCR techniques. J Immunol Methods 301(1–2):41–52

    Article  PubMed  CAS  Google Scholar 

  8. Larsen C, Morris P, Austyn J (1990) Migration of dendritic leukocytes form cardiac allografts into host spleens: a novel pathway for initiation of rejection. J Exp Med 171:307–314

    Article  PubMed  CAS  Google Scholar 

  9. van Kooten C, Lombardi G, Gelderman KA, Sagoo P, Buckland M, Lechler R et al (2011) Dendritic cells as a tool to induce transplantation tolerance: obstacles and opportunities. Transplantation 91(1):2–7. doi:10.1097/TP.0b013e31820263b3

    Article  PubMed  Google Scholar 

  10. Dierselhuis M, Goulmy E (2009) The relevance of minor histocompatibility antigens in solid organ transplantation. Curr Opin Organ Transplant 14(4):419–425. doi:10.1097/MOT.0b013e32832d399c

    Article  PubMed  Google Scholar 

  11. Afzali B, Lombardi G, Lechler RI (2008) Pathways of major histocompatibility complex allorecognition. Curr Opin Organ Transplant 13(4):438–444. doi:10.1097/MOT.0b013e328309ee31

    Article  PubMed  Google Scholar 

  12. Kinnear G, Jones ND, Wood KJ (2013) Costimulation blockade: current perspectives and implications for therapy. Transplantation 95(4):527–535

    Article  PubMed  CAS  Google Scholar 

  13. Greenwald RJ, Freeman GJ, Sharpe AH (2005) The B7 family revisited. Annu Rev Immunol 23(1):515–548

    Article  PubMed  Google Scholar 

  14. Li XC, Rothstein DM, Sayegh MH (2009) Costimulatory pathways in transplantation: challenges and new developments. Immunol Rev 229(1):271–293

    Article  PubMed  CAS  Google Scholar 

  15. Walunas T, Lenschow D, Bakker C, Linsley P, Freeman G, Green J et al (1994) CTLA-4 can function as a negative regulator of T cell activation. Immunity 1:405–413

    Article  PubMed  CAS  Google Scholar 

  16. Burrell BE, Bishop DK (2010) Th17 cells and transplant acceptance. Transplantation 90(9):945–948. doi:10.1097/TP.0b013e3181f5c3de

    Article  PubMed  Google Scholar 

  17. Barbara J, Turvery S, Kingsley C, Spriewald B, Hara M, Witzke O et al (2000) Islet allograft rejection can be mediated by CD4+, alloantigen experienced direct pathway T cells or TH1 and TH2 cytokine phenotype. Transplantation 70:1641–1649

    Article  PubMed  CAS  Google Scholar 

  18. Chen Y, Wood KJ (2007) Interleukin-23 and TH17 cells in transplantation immunity: does 23 + 17 equal rejection? Transplantation 84:1071–1074

    Article  PubMed  CAS  Google Scholar 

  19. Heidt S, San Segundo D, Chadha R, Wood KJ (2010) The impact of Th17 cells on transplant rejection and the induction of tolerance. Curr Opin Organ Transplant 15(4):456–461. doi:10.1097/MOT.0b013e32833b9bfb

    Article  PubMed  Google Scholar 

  20. Chadha R, Heidt S, Wood KJ (2011) Th17: contributors to allograft rejection and a barrier to the induction of transplantation tolerance? Transplantation 91(9):939–945

    Article  PubMed  Google Scholar 

  21. Yuan X, Paez-Cortez J, Schmitt-Knosalla I, D’Addio F, Mfarrej B, Donnarumma M et al (2008) A novel role of CD4 Th17 cells in mediating cardiac allograft rejection and vasculopathy. J Exp Med 205(13):3133–3144

    Article  PubMed  CAS  Google Scholar 

  22. Faust SM, Lu G, Marini BL, Zou W, Gordon D, Iwakura Y et al (2009) Role of T cell TGFβ signaling and IL-17 in allograft acceptance and fibrosis associated with chronic rejection. J Immunol 183(11):7297–7306

    Article  PubMed  CAS  Google Scholar 

  23. Chadha R, Heidt S, Jones ND, Wood KJ (2011) Th17: contributors to allograft rejection and a barrier to the induction of transplantation tolerance? Transplantation 91(9):939–945. doi:10.1097/TP.0b013e3182126eeb

    Article  PubMed  Google Scholar 

  24. Long E, Wood KJ (2009) Regulatory T cells in transplantation: transferring mouse studies to the clinic. Transplantation 88(9):1050–1056

    Article  PubMed  CAS  Google Scholar 

  25. Wood KJ, Sakaguchi S (2003) Regulatory T cells in transplantation tolerance. Nat Rev Immunol 3:199–210

    Article  PubMed  CAS  Google Scholar 

  26. Wood KJ, Bushell A, Hester J (2012) Regulatory immune cells in transplantation. Nat Rev Immunol 12(6):417–430

    Article  PubMed  CAS  Google Scholar 

  27. Long E, Wood KJ (2007) Understanding FOXP3: progress towards achieving transplantation tolerance. Transplantation 84:459–461

    Article  PubMed  CAS  Google Scholar 

  28. Tarlinton DM, Batista F, Smith KGC (2008) The B-cell response to protein antigens in immunity and transplantation. Transplantation 85(12):1698–1704. doi:10.097/TP.0b013e3181777a39

    Article  PubMed  CAS  Google Scholar 

  29. Carroll MC (2004) The complement system in regulation of adaptive immunity. Nat Immunol 5(10):981–986

    Article  PubMed  CAS  Google Scholar 

  30. Cyster JG (2010) B cell follicles and antigen encounters of the third kind. Nat Immunol 11(11):989–996

    Article  PubMed  CAS  Google Scholar 

  31. Sarwal M, Chua M, Kambham N (2003) Molecular heterogeneity in acute renal allograft rejection identified by DNA ­microarray profiling. N Engl J Med 349:125

    Article  PubMed  CAS  Google Scholar 

  32. Naesens M, Zarkhin V, Kambham N, Li L, Kwok S, Hsieh S et al (2008) Evaluation of intra-graft B-cell subsets in renal allograft rejection: 664. Transplantation 86(2S):233–234. doi:10.1097/01.tp.0000332191.92932.c7

    Article  Google Scholar 

  33. Zarkhin V, Li L, Sarwal M (2008) To B or not to B? B-cells and graft rejection. Transplantation 85(12):1705–1714. doi:10.097/TP.0b013e318177793e

    Article  PubMed  Google Scholar 

  34. Kwun J, Knechtle SJ (2009) Overcoming chronic rejection-can it B? Transplantation 88(8):955–961. doi:10.1097/TP.0b013e3181b96646

    Article  PubMed  Google Scholar 

  35. Thaunat O (2011) Pathophysiologic significance of B-cell clusters in chronically rejected grafts. Transplantation 92(2):121–126. doi:10.1097/TP.0b013e31821f74fe

    Article  PubMed  Google Scholar 

  36. Scheepstra C, Bemelman FJ, van der Loos C, Rowshani AT, van Donselaar-Van der Pant KA, Idu MM et al (2008) B cells in cluster or in a scattered pattern do not correlate with clinical outcome of renal allograft rejection. Transplantation 86(6):772–778. doi:10.1097/TP.0b013e3181860a74

    Article  PubMed  Google Scholar 

  37. Sagoo P, Perucha E, Sawitzki B, Tomiuk S, Stephens DA, Miqueu P et al (2010) Development of a cross-platform biomarker signature to detect renal transplant tolerance in humans. J Clin Invest 120(6):1848–1861

    Article  PubMed  CAS  Google Scholar 

  38. Newell KA, Asare A, Kirk AD, Gisler TD, Bourcier K, Suthanthiran M et al (2010) Identification of a B cell signature associated with renal transplant tolerance in humans. J Clin Invest 120(6):1836–1847

    Article  PubMed  CAS  Google Scholar 

  39. Le Texier L, Thebault P, Lavault A, Usal C, Merieau E, Quillard T et al (2011) Long-term allograft tolerance is characterized by the accumulation of B cells exhibiting an inhibited profile. Am J Transplant 11(3):429–438

    Article  PubMed  Google Scholar 

  40. Li XC (2010) The significance of non-T-cell pathways in graft rejection: implications for transplant tolerance. Transplantation 90(10):1043–1047. doi:10.97/TP.0b013e3181efcfe9

    Article  PubMed  CAS  Google Scholar 

  41. Kitchens WH et al (2007) Macrophage depletion suppresses cardiac allograft vasculopathy in mice. Am J Transplant 7:2675–2682

    Article  PubMed  CAS  Google Scholar 

  42. Summers C, Rankin SM, Condliffe AM, Singh N, Peters AM, Chilvers ER (2010) Neutrophil kinetics in health and disease. Trends Immunol 31(8):318–324

    Article  PubMed  CAS  Google Scholar 

  43. Asgari E, Zhou W, Sacks S (2010) Complement in organ transplantation. Curr Opin Organ Transplant 15(4):486–491. doi:10.1097/MOT.0b013e32833b9cb7

    Article  PubMed  Google Scholar 

  44. Lanier LL (2008) Up on the tightrope: natural killer cell activation and inhibition. Nat Immunol 9(5):495–502

    Article  PubMed  CAS  Google Scholar 

  45. Kitchens WH, Uehara S, Chase CM, Colvin RB, Russell PS, Madsen JC (2006) The changing role of natural killer cells in solid organ rejection and tolerance. Transplantation 81(6):811–817. ­doi:10.1097/01.tp.0000202844.33794.0e

    Article  PubMed  Google Scholar 

  46. Luster AD, Alon R, von Andrian UH (2005) Immune cell migration in inflammation: present and future therapeutic targets. Nat Immunol 6(12):1182–1190

    Article  PubMed  CAS  Google Scholar 

  47. Anglicheau D, Suthanthiran M (2008) Noninvasive prediction of organ graft rejection and outcome using gene expression patterns. Transplantation 86(2):192–199. doi:10.1097/TP.0b013e31817eef7b

    Article  PubMed  Google Scholar 

  48. Win TS, Pettigrew GJ (2010) Humoral autoimmunity and transplant vasculopathy: when allo is not enough. Transplantation 90(2):113–120. doi:10.1097/TP.0b013e3181e25a59

    Article  PubMed  Google Scholar 

  49. Terasaki PI, Cai J (2008) Human leukocyte antigen antibodies and chronic rejection: from association to causation. Transplantation 86(3):377–383. doi:10.1097/TP.0b013e31817c4cb8

    Article  PubMed  Google Scholar 

  50. Brook M, Wood K, Jones N (2006) The impact of memory T cells on rejection and tolerance. Transplantation 82:1–9

    Article  PubMed  Google Scholar 

  51. Adams A, Williams MA, Jones T, Shiasugi N, Durham MM, Kaech S et al (2003) Heterologous immunity provides a potent barrier to transplantation tolerance. J Clin Invest 111:1887–1895

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The work from the authors’ own laboratory described in this review was supported by grants from The Wellcome Trust, Medical Research Council, British Heart Foundation, Kidney Research UK, Garfield Weston Trust, and European Union through the Indices of Tolerance, RISET, OPTISTEM, TRIAD, and BioDRIM projects.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Wood, K.J., Zaitsu, M., Goto, R. (2013). Cell Mediated Rejection. In: Zachary, A., Leffell, M. (eds) Transplantation Immunology. Methods in Molecular Biology, vol 1034. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-493-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-493-7_3

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-492-0

  • Online ISBN: 978-1-62703-493-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics