Skip to main content

Molecular Dynamics Simulations of Membrane Proteins

  • Protocol
  • First Online:
Membrane Biogenesis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1033))

Abstract

Molecular dynamics simulations are a powerful tool for complementing experimental studies, providing insights in biological processes at the molecular and atomistic level, at timescales from picoseconds to microseconds. Simulations are useful for testing hypotheses and can provide explanations for experimental observations as well as suggestions for further experiments. This does require that the simulation setup allows assessment of the question addressed. For example, it is evident that for simulation of a protein in its functional state the protein model and the environment have to mimic the biological situation as close as possible. In this chapter, a general strategy is presented for setting up and running simulations of membrane proteins of known structure in biological membranes of diverse composition and size.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Jensen MO, Jogini V, Borhani DW, Leffler AE, Dror RO, Shaw DE (2012) Mechanism of voltage gating in potassium channels. Science 336:229–233

    Article  PubMed  CAS  Google Scholar 

  2. Tieleman DP (2012) Computer simulation of membrane dynamics. In: Comprehensive biophysics, vol 5. Elsevier

    Google Scholar 

  3. Wolf MG, Hoefling M, Aponte-Santamaría C, Grubmüller H, Groenhof G (2010) g_membed: efficient insertion of a membrane protein into an equilibrated lipid bilayer with minimal perturbation. J Comput Chem 31:2169–2174

    Article  PubMed  CAS  Google Scholar 

  4. Kandt C, Ash WL, Tieleman DP (2007) Setting up and running molecular dynamics simulations of membrane proteins. Methods 41:475–488

    Article  PubMed  CAS  Google Scholar 

  5. Marrink SJ, Lindahl E, Edholm O (2001) Simulation of the spontaneous aggregation of phospholipids into bilayers. J Am Chem Soc 123:8638–8639

    Article  PubMed  CAS  Google Scholar 

  6. Böckmann RA, Caflisch A (2005) Formation of detergent micelles around the outer membrane protein OmpX. Biophys J 88: 3191–3204

    Article  PubMed  Google Scholar 

  7. Marrink SJ, Risselada HJ, Yefimov S, Tieleman DP, de Vries AH (2007) The MARTINI forcefield: coarse grained model for biomolecular simulations. J Phys Chem B 111:7812–7824

    Article  PubMed  CAS  Google Scholar 

  8. Monticelli L, Kandasamy SK, Periole X, Larson RG, Tieleman DP, Marrink SJ (2008) The MARTINI coarse grained forcefield: extension to proteins. J Chem Theory Comput 4: 819–834

    Article  CAS  Google Scholar 

  9. Hess B, Kutzner K, van der Spoel D, Lindahl E (2008) GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J Chem Theory Comput 4:435–447

    Article  CAS  Google Scholar 

  10. Sali A, Potterton L, Yuan F, van Vlijmen H, Karplus M (1995) Evaluation of comparative protein modelling by MODELLER. Proteins 23:318–326

    Article  PubMed  CAS  Google Scholar 

  11. Kabsch W, Sander C (1983) Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 22:2577–2637

    Article  PubMed  CAS  Google Scholar 

  12. de Jong DH, Gurpreet S, Bennett WFD, Arnarez C, Wassenaar TA, Schäfer LV, Periole X, Tieleman DP, Marrink SJ (2013) Improved parameters for the martini coarse-grained protein force field. J Chem Theory Comput 9: 687–697

    Article  Google Scholar 

  13. Wassenaar TA, Sengupta D, Tieleman DP, Marrink SJ (in preparation) INSANE: fast and versatile generation of custom membranes for molecular simulations

    Google Scholar 

  14. Wassenaar TA, Pluhackova K, Böckmann RA, Marrink SJ, Tieleman DP (2013) Going backward: A flexible geometric approach to reverse transformation from coarse grained to atomistic models. (in preparation)

    Google Scholar 

  15. Humphrey W, Dalke A, Schulten K (1996) VMD—visual molecular dynamics. J Mol Graph 14:33–38

    Article  PubMed  CAS  Google Scholar 

  16. Guex N, Peitsch MC (1997) SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis 18:2714–2723

    Article  PubMed  CAS  Google Scholar 

  17. The PyMOL molecular graphics system, Version 1.5.0.4 Schrödinger, LLC

    Google Scholar 

  18. Klauda JB et al (2010) Update of the CHARMM all-atom additive force field for lipids: validation on six lipid types. J Phys Chem B 114:7830–7843

    Article  PubMed  CAS  Google Scholar 

  19. Hornak V, Abel R, Okur A, Strockbine B, Roitberg A, Simmerling C (2006) Comparison of multiple Amber force fields and development of improved protein backbone parameters. Proteins 65:712–725

    Article  PubMed  CAS  Google Scholar 

  20. Jämbec JPM, Lyubartsev AP (2012) An extension and further validation of an all-atomistic force field for biological membranes. J Chem Theory Comput 8:2938–2948

    Article  Google Scholar 

  21. Schuler LD, Daura X, van Gunsteren WF (2001) An improved GROMOS96 force field for aliphatic hydrocarbons in the condensed phase. J Comput Chem 22:1205–1218

    Article  CAS  Google Scholar 

  22. Poger D, Mark AE (2010) On the validation of molecular dynamics simulations of saturated and cis-mono unsaturated phosphatidylcholine lipid bilayers: A comparison with experiment. J Chem Theory Comput 6:325–336

    Article  CAS  Google Scholar 

  23. Darden T, York D, Pedersen L (1993) Particle mesh Ewald: an N-log(N) method for Ewald sums in large systems. J Chem Phys 98: 10089–10092

    Article  CAS  Google Scholar 

  24. Allen WJ, Lemkul JA, Bevan DR (2009) GridMAT-MD: a grid-based membrane analysis tool for use with molecular dynamics. J Comput Chem 30:1952–1958

    Article  PubMed  CAS  Google Scholar 

  25. Georgescu RE, Alexov EG, Gunner MR (2002) Combining conformational flexibility and continuum electrostatics for calculating pKa’s in proteins. Biophys J 83:1731–1748

    Article  PubMed  CAS  Google Scholar 

  26. Alexov E, Gunner MR (1997) Incorporating protein conformational flexibility into pH-titration calculations: results on T4 lysozyme. Biophys J 74:2075–2093

    Article  Google Scholar 

Download references

Acknowledgment

This work was supported by a grant from the Deutsche Forschungsgemeinschaft (BO 2963/2-1) to RAB.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Pluhackova, K., Wassenaar, T.A., Böckmann, R.A. (2013). Molecular Dynamics Simulations of Membrane Proteins. In: Rapaport, D., Herrmann, J. (eds) Membrane Biogenesis. Methods in Molecular Biology, vol 1033. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-487-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-487-6_6

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-486-9

  • Online ISBN: 978-1-62703-487-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics