Skip to main content

Combined Total Proteomic and Phosphoproteomic Analysis of Human Pluripotent Stem Cells

  • Protocol
  • First Online:
Embryonic Stem Cell Immunobiology

Abstract

Despite advances in understanding pluripotency through traditional cell biology and gene expression profiling, the signaling networks responsible for maintenance of pluripotency and lineage-specific differentiation are poorly defined. To aid in an improved understanding of these networks at the systems level, we present procedures for the combined analysis of the total proteome and total phosphoproteome (termed (phospho)proteome) from human embryonic stem cells (hESCs), human induced pluripotent stem cells (hiPSCs), and their differentiated derivatives. Because there has been considerable heterogeneity in the literature on the culture of pluripotent cells, we first briefly describe our feeder-free cell culture protocol. The focus, however, is on procedures necessary to generate large-scale (phospho)proteomic data from the cells. Human cells are described here, but the (phospho)proteomic procedures are broadly applicable. Detailed procedures are given for lysis of the cells, protein sample preparation and digestion, multidimensional liquid chromatography, analysis by tandem mass spectrometry, and database searches for peptide/protein identification (ID). We summarize additional data analysis procedures, the subject of ongoing efforts.

Authors Junjie Hou and Brian T.D. Tope contributed equally to this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:861–872

    Article  PubMed  CAS  Google Scholar 

  2. Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM (1998) Embryonic stem cell lines derived from human blastocysts. Science 282:1145–1147

    Article  PubMed  CAS  Google Scholar 

  3. Singec I, Jandial R, Crain A, Nikkhah G, Snyder EY (2007) The leading edge of stem cell therapeutics. Annu Rev Med 58:313–328

    Article  PubMed  CAS  Google Scholar 

  4. Brandenberger R, Wei H, Zhang S, Lei S, Murage J, Fisk GJ, Li Y, Xu C, Fang R, Guegler K, Rao MS, Mandalam R, Lebkowski J, Stanton LW (2004) Transcriptome characterization elucidates signaling networks that control human ES cell growth and differentiation. Nat Biotechnol 22:707–716

    Article  PubMed  Google Scholar 

  5. Ramalho-Santos M, Yoon S, Matsuzaki Y, Mulligan RC, Melton DA (2002) “Stemness”: transcriptional profiling of embryonic and adult stem cells. Science 298:597–600

    Article  PubMed  CAS  Google Scholar 

  6. Ideker T, Thorsson V, Ranish JA, Christmas R, Buhler J, Eng JK, Bumgarner R, Goodlett DR, Aebersold R, Hood L (2001) Integrated genomic and proteomic analyses of a systematically perturbed metabolic network. Science 292:929–934

    Article  PubMed  CAS  Google Scholar 

  7. Blume-Jensen P, Hunter T (2001) Oncogenic kinase signalling. Nature 411:355–365

    Article  PubMed  CAS  Google Scholar 

  8. Hunter T (2009) Tyrosine phosphorylation: thirty years and counting. Curr Opin Cell Biol 21:140–146

    Article  PubMed  CAS  Google Scholar 

  9. Schlessinger J (2000) Cell signaling by receptor tyrosine kinases. Cell 103:211–225

    Article  PubMed  CAS  Google Scholar 

  10. Aebersold R, Mann M (2003) Mass spectrometry-­based proteomics. Nature 422:198–207

    Article  PubMed  CAS  Google Scholar 

  11. Brill LM, Xiong W, Lee KB, Ficarro SB, Crain A, Xu Y, Terskikh A, Snyder EY, Ding S (2009) Phosphoproteomic analysis of human embryonic stem cells. Cell Stem Cell 5:204–213

    Article  PubMed  CAS  Google Scholar 

  12. Brill LM, Salomon AR, Ficarro SB, Mukherji M, Stettler-Gill M, Peters EC (2004) Robust phosphoproteomic profiling of tyrosine phosphorylation sites from human T cells using immobilized metal affinity chromatography and tandem mass spectrometry. Anal Chem 76:2763–2772

    Article  PubMed  CAS  Google Scholar 

  13. Brill LM, Motamedchaboki K, Wu S, Wolf DA (2009) Comprehensive proteomic analysis of Schizosaccharomyces pombe by two-­dimensional HPLC-tandem mass spectrometry. Methods 48:311–319

    Article  PubMed  CAS  Google Scholar 

  14. Hou J, Cui Z, Xie Z, Xue P, Wu P, Chen X, Li J, Cai T, Yang F (2010) Phosphoproteome analysis of rat L6 myotubes using reversed-­phase C18 prefractionation and titanium dioxide enrichment. J Proteome Res 9:777–788

    Article  PubMed  CAS  Google Scholar 

  15. Mitulovic G, Stingl C, Steinmacher I, Hudecz O, Hutchins JR, Peters JM, Mechtler K (2009) Preventing carryover of peptides and proteins in nano LC-MS separations. Anal Chem 81:5955–5960

    Article  PubMed  CAS  Google Scholar 

  16. Swaney DL, McAlister GC, Coon JJ (2008) Decision tree-driven tandem mass ­spectrometry for shotgun proteomics. Nat Methods 5:959–964

    Article  PubMed  CAS  Google Scholar 

  17. McAlister GC, Phanstiel D, Wenger CD, Lee MV, Coon JJ (2010) Analysis of tandem mass spectra by FTMS for improved large-scale proteomics with superior protein quantification. Anal Chem 82:316–322

    Article  PubMed  CAS  Google Scholar 

  18. Olsen JV, Schwartz JC, Griep-Raming J, Nielsen ML, Damoc E, Denisov E, Lange O, Remes P, Taylor D, Splendore M, Wouters ER, Senko M, Makarov A, Mann M, Horning S (2009) A dual pressure linear ion trap Orbitrap instrument with very high sequencing speed. Mol Cell Proteomics 8:2759–2769

    Article  PubMed  CAS  Google Scholar 

  19. Good DM, Wenger CD, McAlister GC, Bai DL, Hunt DF, Coon JJ (2009) Post-­acquisition ETD spectral processing for increased peptide identifications. J Am Soc Mass Spectrom 20:1435–1440

    Article  PubMed  CAS  Google Scholar 

  20. Chalkley RJ, Medzihradszky KF, Lynn AJ, Baker PR, Burlingame AL (2010) Statistical analysis of peptide electron transfer dissociation fragmentation mass spectrometry. Anal Chem 82:579–584

    Article  PubMed  CAS  Google Scholar 

  21. Syka JE, Coon JJ, Schroeder MJ, Shabanowitz J, Hunt DF (2004) Peptide and protein sequence analysis by electron transfer dissociation mass spectrometry. Proc Natl Acad Sci U S A 101:9528–9533

    Article  PubMed  CAS  Google Scholar 

  22. Zhou JY, Schepmoes AA, Zhang X, Moore RJ, Monroe ME, Lee JH, Camp DG, Smith RD, Qian WJ (2010) Improved LC-MS/MS spectral counting statistics by recovering low-­scoring spectra matched to confidently identified peptide sequences. J Proteome Res 9:5698–5704

    Article  PubMed  CAS  Google Scholar 

  23. Singec I, Hoo J, Crain AM, Tobe BTD, Talantova M, Doctor KS et al. Deep Phosphoproteomic Profiling of Human Pluripotency and neural lineage commitment (In Preparation)

    Article  PubMed  CAS  Google Scholar 

  24. Zhang Y, Wen Z, Washburn MP, Florens L (2010) Refinements to label free proteome quantitation: how to deal with peptides shared by multiple proteins. Anal Chem 82:2272–2281

    Article  PubMed  CAS  Google Scholar 

  25. Li QR, Ning ZB, Tang JS, Nie S, Zeng R (2009) Effect of peptide-to-TiO2 beads ratio on phosphopeptide enrichment selectivity. J Proteome Res 8:5375–5381

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Anjum Khan and Dante Bencivengo of Thermo Fisher Scientific; Peter Kent, Lori Ann Upton, David Mintline, and Kerry Nugent of Michrom Bioresources for support with instrumentation; David Chiang and Patrick Chu from SageN and Kutbuddin Doctor from the Sanford-Burnham Medical Research Institute (SBMRI) for bioinformatics support; as well as Khatereh Motamedchaboki and Wenhong Zhu from SBMRI for help with some of the experiments. Support was provided by the SBMRI, NCI Cancer Center Support Grant 5 P30 CA30199-28, The La Jolla Interdisciplinary Neuroscience Center Cores Grant 5 P30 NS057096 from NINDS, and RC2 MH090011 from NIMH.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this protocol

Cite this protocol

Hou, J. et al. (2013). Combined Total Proteomic and Phosphoproteomic Analysis of Human Pluripotent Stem Cells. In: Zavazava, N. (eds) Embryonic Stem Cell Immunobiology. Methods in Molecular Biology, vol 1029. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-478-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-478-4_12

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-477-7

  • Online ISBN: 978-1-62703-478-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics