Skip to main content

Toxicity of Novel Nanosized Formulations Used in Medicine

  • Protocol
  • First Online:
Oxidative Stress and Nanotechnology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1028))

Abstract

Nanotechnology involves the creation and manipulation of materials at nanoscale levels (1–100 nm) to create products that exhibit novel properties. While this motivation has driven nanoscience and technology in physics and engineering, it is not the main reason that nanoparticles are useful for systemic applications in the human body. The application of nanotechnology to medicine, known as nanomedicine, concerns the use of precisely engineered materials at this length scale to develop novel therapeutic and diagnostic modalities. A number of nanotherapeutic formulations are already approved for medical use and more are in the approval pipeline currently. This chapter is intended to provide an overview of the toxicity of these therapeutic nanoparticles and to summarize the current state of the field. We begin with background on the sources of exposure to nanoparticles, followed by reviewing different forms of nanosized therapeutic tools as quantum dots, nanoshells, nanocapsules, echogenic bubble, and “nanoshuttles.” Moreover, cytotoxic effects of nanoparticles on cell membrane, mitochondrial function, prooxidant/antioxidant status, enzyme leakage, DNA, and other biochemical endpoints were elucidated. We highlight the need for caution during the use and disposal of such manufactured nanomaterials to prevent unintended environmental impacts. Moreover, different strategies which could be used to minimize or eliminate nanotoxicity were also discussed in detail. Understanding of how to tune size and surface properties to provide safety will permit the creation of new, more effective nanomedicines for systemic use.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shvedova AA, Kisin ER, Porter D, Schulte P, Kagan VE, Fadeel B et al (2009) Mechanisms of pulmonary toxicity and medical applications of carbon nanotubes: two faces of Janus? Pharmacol Ther 121:192–204

    CAS  Google Scholar 

  2. Zhang S, Bian Z, Gu C, Zhang Y, He S, Gu N et al (2007) Preparation of anti-human cardiac troponin I immunomagnetic nanoparticles and biological activity assays. Colloids Surf B Biointerfaces 55:143–148

    CAS  Google Scholar 

  3. Oberdörster G, Oberdörster E, Oberdörster J (2005) Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113:823–839

    Google Scholar 

  4. Oberdörster G, Stone V, Donaldson K (2007) Toxicology of nanoparticles: a historical perspective. Nanotoxicology 1:2–25

    Google Scholar 

  5. Dreher KL (2004) Health and environmental impact of nanotechnology: toxicological assessment of manufactured nanoparticles. Toxicol Sci 77:3–5

    CAS  Google Scholar 

  6. Allen TM, Cullis PM (2004) Drug delivery systems: entering the main stream. Science 303:1818–1822

    CAS  Google Scholar 

  7. Oberdörster G (2000) Toxicology of ultrafine particles; in vivo studies. Phil Trans R Soc Lond A 358:2719–2740

    Google Scholar 

  8. Borm PJA, Schins RPF, Albrecht A (2004) Inhaled particles and lung cancer, part B: paradigms and risk assessment. Int J Cancer 110:3–14

    CAS  Google Scholar 

  9. Chalupa DC, Morrow PE, Oberdörster G, Utell MJ, Frampton MW (2004) Ultrafine particle deposition in subjects with asthma. Environ Health Perspect 112:679–682

    Google Scholar 

  10. Johanston CJ, Finkelstein N, Gelein R, Bagos R, Oberdörster G (1996) Characterization of the early pulmonary inflammatory response associated with PTFE fume exposure. Toxicol Appl Pharmacol 140:154–163

    Google Scholar 

  11. Donaldson K, Brown D, Clouter A, Duffin R, MacNee W, Renwick L et al (2002) The pulmonary toxicology of ultrafine particles. J Aerosol Med 15:213–220

    CAS  Google Scholar 

  12. Boswell C (2002) Nanocrystalline materials for personal care. Chemical Market Reporter November 11:6

    Google Scholar 

  13. Dunford R, Salinaro A, Cai L, Serpone N, Horikoshi S, Hidaka H et al (1997) Chemical oxidation and DNA damage catalysed by inorganic sunscreen ingredients. FEBS Lett 418:87–90

    CAS  Google Scholar 

  14. Hidaka H, Horikoshi S, Serpone N, Knowland J (1997) In vitro photochemical damage to DNA, RNA and bases by an inorganic sunscreen agent on exposure to UVA and UVB radiation. J Photochem Photobiol 111:203–213

    Google Scholar 

  15. Li X, Quan X, Kutal C (2004) Synthesis and photocatalytic properties of quantum confined titanium dioxide nanoparticle. Scr Mater 50:499–505

    CAS  Google Scholar 

  16. Menzel F, Reinert T, Vogt J, Butz T (2004) Investigations of percutaneous uptake of ultrafine TiO2 particles at the high energy ion nanoprobe LIPSION. Nucl Inst Meth Phys Res B Beam Interact Mater Atoms 219–220:82–86

    Google Scholar 

  17. Powell JJ, Harvey RSJ, Ashwood P, Wolstencroft R, Gershwin ME, Thompson RPH (2000) Immune potentiation of ultrafine dietary particles in normal subjects and patients with inflammatory bowel disease. J Autoimmun 14:99–105

    CAS  Google Scholar 

  18. Hugot J (2004) Inflammatory bowel disease: a complex group of genetic disorders. Best Pract Res Clin Gastroenterol 18:451–462

    Google Scholar 

  19. Urban RM, Jacobs JJ, Tomlinson MJ, Gavrilovic J, Black J, Peoch M (2000) Dissemination of wear particles to the liver, spleen and abdominal lymph nodes of patients with hip and knee replacement. J Bone Joint Surg Am 82A:457–477

    Google Scholar 

  20. Gatti AM, Rivasi F (2002) Biocompatibility of micro- and nanoparticles. Part I: in liver and kidney. Biomaterials 23:2381–2387

    CAS  Google Scholar 

  21. Gatti AM (2004) Biocompatibility of micro and nano-particles in the colon. Part II. Biomaterials 25:385–392

    CAS  Google Scholar 

  22. Szebeni J, Baranyi L, Savay S, Milisevits J, Bunger R, Laverman P et al (2002) Role of complement activation in hypersensitivity reactions to Doxil and HYNIC PEG liposomes: experimental and clinical studies. J Liposome Res 12:165–172

    CAS  Google Scholar 

  23. Derfus AM, Chan WCW, Bhatia SN (2004) Probing the cytotoxicity of semiconductor quantum dots. Nano Lett 4:11–18

    CAS  Google Scholar 

  24. Webster TJ (2006) Nanomedicine-what’s in a definition. Int J Nanomedicine 1:115–116

    Google Scholar 

  25. Chen H, Langer R (1998) Oral particulate delivery: status and future trends. Adv Drug Deliv Rev 34:339–350

    CAS  Google Scholar 

  26. Panyam J, Labhasetwar V (2003) Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv Drug Deliv Rev 55:329–347

    CAS  Google Scholar 

  27. Kreuter J, Ramge P, Petrov V, Hamm S, Gelperina SE, Engelhardt B et al (2003) Direct evidence that polysorbate-80-coated poly(butylcyanoacrylate) nanoparticles deliver drugs to the CNS via specific mechanisms requiring prior binding of drug to the nanoparticles. Pharm Res 20:409–416

    CAS  Google Scholar 

  28. Bhardwaj V, Hariharan S, Bala I, Lamprecht A, Kumar N, Panchagnula R et al (2005) Pharmaceutical aspects of polymeric nanoparticles for oral delivery. J Biomed Nanotech 1:235–258

    CAS  Google Scholar 

  29. Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R (2007) Nanocarriers as an emerging platform for cancer. Nat Nanotechnol 2:751–760

    CAS  Google Scholar 

  30. Alivisatos AP (2002) Less is more in medicine. In: Understanding nanotechnology, Warner Book, New York, NY, pp 56–69

    Google Scholar 

  31. Ratner M, Ratner D (2003) Nanotechnology: a gentle introduction to the next big idea. Prentice-Hall, Upper Saddle River, NJ

    Google Scholar 

  32. Kipen HM, Laskin DL (2005) Smaller is not always better: nanotechnology yields nanotoxicology. Am J Physiol 289:L696–L697

    CAS  Google Scholar 

  33. Hagens WI, Oomen AG, de Jong WH, Cassee FR, Sips AJAM (2007) What do we (need to) know about the kinetic properties of nanoparticles in the body? Regul Toxicol Pharmacol 49:217–229

    CAS  Google Scholar 

  34. Moghimi SM, Hunter AC, Murray JC (2005) Nanomedicine: current status and future prospects. FASEB J 19:311–330

    CAS  Google Scholar 

  35. Garnett MC, Kallinteri P (2006) Nanomedicines and nanotoxicology: some physiological principles, Occup Med 56:307–311

    CAS  Google Scholar 

  36. Vega-Villa KR, Takemoto JK, Yáñez JA, Remsberg CM, Forrest ML, Davies NM (2008) Clinical toxicities of nanocarrier systems. Adv Drug Deliv Rev 60:929–938

    CAS  Google Scholar 

  37. Wiesenthal A, Hunter L, Wang S, Wickliffe J, Wilkerson M (2011) Nanoparticles: small and mighty. Int J Dermatol 5:247–254

    Google Scholar 

  38. Hardman R (2006) A toxicological review of quantum dots: toxicity depends on physico-chemical and environmental factors. Environ Health Perspect 114:165–172

    Google Scholar 

  39. Denison RA (2005) Environmental and safety impacts on nanotechnology: what research is needed? http://www.environmentaldefense.org/documents/5136_DenisonHousetestimonyOnNano.pdf

  40. Liang HD, Blomley MJK (2003) The role of ultrasound in molecular imaging. Br J Radiol 76:S140–S150

    CAS  Google Scholar 

  41. Stern JM, Cadeddu JA (2008) Emerging use of nanoparticles for the therapeutic ablation of urologic malignancies. Urol Oncol 26:93–96

    CAS  Google Scholar 

  42. Müller RH, Keck CM (2004) Drug delivery to the brain—realization by novel drug carriers. J Nanosci Nanotechnol 4:471–483

    Google Scholar 

  43. Moghimi SM, Hunter AC, Murray J (2001) Long-circulating and target-specific nanoparticles: theory to practice. Pharmacol Rev 53:283–318

    CAS  Google Scholar 

  44. Ito A, Shinkai M, Honda H, Kobayashi T (2005) Medical application of functionalized magnetic nanoparticles. J Biosci Bioeng 100:1–11

    CAS  Google Scholar 

  45. Pankhurst QA, Connolly J, Jones SK, Dobson J (2003) Applications of magnetic nanoparticles in biomedicine. J Phys D 36:R167–R181

    CAS  Google Scholar 

  46. Vasir JK, Labhasetwar V (2005) Targeted drug delivery in cancer therapy. Technol Cancer Res Treat 4:363–374

    CAS  Google Scholar 

  47. Moroz P, Jones SK, Gray BN (2002) Magnetically mediated hyperthermia: current status and future directions. Int J Hyperthermia 18:267–284

    CAS  Google Scholar 

  48. Sun L, Chow LC (2008) Preparation and properties of nano-sized calcium fluoride for dental applications. Dent Mater 24:111–116

    Google Scholar 

  49. Saad M, Garbuzenko OB, Ber E, Chandna P, Khandare JJ, Pozharov VP et al (2008) Receptor targeted polymers, dendrimers, liposomes: which nanocarrier is the most efficient for tumor-specific treatment and imaging? J Control Release 130:107–114

    CAS  Google Scholar 

  50. Ferrara K, Pollard R, Borden M (2007) Ultrasound microbubble contrast agents: fundamentals and application to gene and drug delivery. Annu Rev Biomed Eng 9:415–447

    CAS  Google Scholar 

  51. Bull JL (2007) The application of microbubbles for targeted drug delivery. Expert Opin Drug Deliv 4:475–493

    CAS  Google Scholar 

  52. Chen S, Shohet RV, Bekeredjian R, Frenkel P, Grayburn PA (2003) Optimization of ultrasound parameters for cardiac gene delivery of adenoviral or plasmid deoxyribonucleic acid by ultrasound-targeted microbubble destruction. J Am Coll Cardiol 42:301–308

    CAS  Google Scholar 

  53. Lum AF, Borden MA, Dayton PA, Kruse DE, Simon SI, Ferrara KW (2006) Ultrasound radiation force enables targeted deposition of model drug carriers loaded on microbubbles. J Control Release 111:128–134

    CAS  Google Scholar 

  54. Souza GR, Christianson DR, Staquicini FI, Ozawa MG, Snyder EY, Sidman RL et al (2006) Networks of gold nanoparticles and bacteriophage as biological sensors and cell-targeting agents. Proc Natl Acad Sci USA 103:1215–1220

    CAS  Google Scholar 

  55. Souza GR, Staquicini FI, Christianson DR, Ozawa MG, Miller JH, Pasqualini R et al (2010) Combinatorial targeting and nanotechnology applications. Biomed Microdevices 12:597–606

    Google Scholar 

  56. Sengupta S, Eavarone D, Capila I, Zhao G, Watson N, Kiziltepe T et al (2005) Temporal targeting of tumour cells and neovasculature with a nanoscale deliverysystem. Nature 436:568–572

    CAS  Google Scholar 

  57. Garcia-Bennett A, Nees M, Fadeel B (2011) In search of the holy grail: folate-targeted nanoparticles for cancer therapy. Biochem Pharmacol 181:976–984

    Google Scholar 

  58. Naqvi S, Samim M, Abdin M, Ahmed FJ, Maitra A, Prashant C et al (2010) Concentration-dependent toxicity of iron oxide nanoparticles mediated by increased oxidative stress. Int J Nanomedicine 16:983–989

    Google Scholar 

  59. Behlke MA (2006) Progress towards in vivo use of siRNAs. Mol Ther 13:644–670

    CAS  Google Scholar 

  60. Xie FY, Woodle MC, Lu PY (2006) Harnessing in vivo siRNA delivery for drug discovery and therapeutic development. Drug Discov Today 11:67–73

    CAS  Google Scholar 

  61. De Fougerolles A, Vornlocher HP, Maraganore J, Lieberman J (2007) Interfering with disease: a progress report on siRNA-based therapeutics. Nat Rev Drug Discov 6:443–453

    Google Scholar 

  62. Pouton CW, Seymour LW (2001) Key issues in non-viral gene delivery. Adv Drug Deliv Rev 46:187–203

    CAS  Google Scholar 

  63. Elouahabi A, Ruysschaert JM (2005) Formation and intracellular trafficking of lipoplexes and polyplexes. Mol Ther 11:336–347

    CAS  Google Scholar 

  64. Torchilin VP (2000) Drug targeting. Eur J Pharm Sci 11:S81–S91

    CAS  Google Scholar 

  65. Nighswonger G (1999) A Medical Device Link MD& DI column: new polymers and nanotubes add muscle to prothetic limbs, http://www.devicelink.com/mddi/archive/99/08/004.html

  66. Oberdörster G (2006) Toxicology of airborn environment and occupational particles. http://www2.envmed.rochester.edu/envmed/tox/faculty/oberdoerster.html

  67. Lam CW, James JT, McCluskey R, Hunter RL (2004) Pulmonary toxicity of single-wall carbon nanotubes in mice 7 and 90 days after intractracheal instillation. Toxicol Sci 77:126–134

    CAS  Google Scholar 

  68. Warheit DB, Laurence BR, Reed KL, Roach DH, Reynolds GA, Webb TR (2004) Comparative pulmonary toxicity assessment of single-wall carbon nanotubes in rats. Toxicol Sci 77:117–125

    CAS  Google Scholar 

  69. Poland CA, Duffin R, Kinloch I, Maynard A, Wallace WAH, Seaton A et al (2008) Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study. Nat Nanotechnol 3:423–428

    CAS  Google Scholar 

  70. Chou CC, Hsiao HY, Hong QS, Chen CH, Peng YW, Chen HW et al (2008) Single-walled carbon nanotubes can induce pulmonary injury in mouse model. Nano Lett 3:437–445

    Google Scholar 

  71. Mitchell LA, Gao J, Vander WR, Gigliotti A, Burchiel SW, McDonald JD (2007) Pulmonary and systemic immune response to inhaled multiwalled carbon nanotubes. Toxicol Sci 100:203–214

    CAS  Google Scholar 

  72. Muller J, Huaux F, Moreau N, Misson P, Heilier JF, Delos M et al (2005) Respiratory toxicity of multi-wall carbon nanotubes. Toxicol Appl Pharmacol 207:221–231

    CAS  Google Scholar 

  73. Di Giorgio ML, Di Bucchianico S, Ragnelli AM, Aimola P, Santucci S, Poma A (2011) Effects of single and multi walled carbon nanotubes on macrophages: cyto and genotoxicity and electron microscopy. Mutat Res 722:20–31

    Google Scholar 

  74. Donaldson K, Stone V, Tran CL, Kreyling W, Borm PJA (2004) Nanotoxicology. Occup Environ Med 61:727–728

    CAS  Google Scholar 

  75. Limbach LK, Wick P, Manser P, Grass RN, Bruinink A, Stark WJ (2007) Exposure of engineered nanoparticles to human lung epithelial cells: influence of chemical composition and catalytic activity on oxidative stress. Environ Sci Technol 41:4158–4163

    CAS  Google Scholar 

  76. Wright JB, Lam K, Buret AG, Olson ME, Burrell RE (2002) Early healing events in a porcine model of contaminated wounds: effects of nanocrystalline silver on matrix metalloproteinases, cell apoptosis, and healing. Wound Repair Regen 10:141–151

    Google Scholar 

  77. Supp AP, Neely AN, Supp DM, Warden GD, Boyce ST (2005) Evaluation of cytotoxicity and antimicrobial activity of Acticoat burn dressing for management of microbial contamination in cultured skin substitutes grafted to athymic mice. J Burn Care Rehabil 26:238–246

    Google Scholar 

  78. Chen HW, Su SF, Chien CT, Lin WH, Yu SL, Chou CC et al (2006) Titanium dioxide nanoparticles induce emphysema-like lung injury in mice. FASEB J 20:2393–2395

    CAS  Google Scholar 

  79. Muangman P, Chuntrasakul C, Silthram S, Suvanchote S, Benjathanung R, Kittidacha S et al (2006) Comparison of efficacy of 1 % silver sulfadiazine and Acticoat™ for treatment of partial-thickness burn wounds. J Med Assoc Thai 89:953–958

    Google Scholar 

  80. Paddle-Ledinek JE, Nasa Z, Cleland HJ (2006) Effect of different wound dressings on cell viability and proliferation. Plast Reconstr Surg 117:110S–118S

    CAS  Google Scholar 

  81. Braydich-Stolle L, Hussain S, Schlager JJ, Hofmann MC (2005) In vitro cytotoxicity of nanoparticles in mammalian germline stem cells. Toxicol Sci 88:412–419

    CAS  Google Scholar 

  82. Ahamed M, AlSalhi MSM, Siddiqui KJ (2010) Silver nanoparticle applications and human health. Clin Chim Acta 411:1841–1848

    CAS  Google Scholar 

  83. Ahamed M, Karns M, Goodson M, Rowe J, Hussain SM, Schlager JJ et al (2008) DNA damage response to different surface chemistry of silver nanoparticles in mammalian cells. Toxicol Appl Pharmacol 233:404–410

    CAS  Google Scholar 

  84. Teodoro JS, Simões AM, Duarte FV, Rolo AP, Murdoch RC, Hussain SM et al (2011) Assessment of the toxicity of silver nanoparticles in vitro: a mitochondrial perspective. Toxicol In Vitro 25:664–670

    CAS  Google Scholar 

  85. Hackenberg S, Scherzed A, Kessler M, Hummel S, Technau A, Froelich K et al (2011) Silver nanoparticles: evaluation of DNA damage, toxicity and functional impairment in human mesenchymal stem cell. Toxicol Lett 201:27–33

    CAS  Google Scholar 

  86. El Badawy AM, Silva RG, Morris B, Scheckel KG, Suidan MT, Tolaymat TM (2011) Surface charge-dependent toxicity of silver nanoparticles. Environ Sci Technol 45:283–287

    CAS  Google Scholar 

  87. Takenaka S, Karg E, Roth C, Schulz H, Ziesenis A, Heinzmann U et al (2001) Pulmonary and systemic distribution of inhaled ultrafine silver particles in rats. Environ Health Perspect 109:547–551

    CAS  Google Scholar 

  88. Hussain SM, Hess KL, Gearhart JM, Geiss KT, Schlager JJ (2005) In vitro toxicity of nanoparticles in BRL 3A rat liver cells. Toxicol in Vitro 19:975–983

    CAS  Google Scholar 

  89. Hussain SM, Javorina AK, Schrand AM, Duhart HM, Ali SF, Schlager JJ (2006) The interaction of manganese nanoparticles with PC-12 cells induces dopamine depletion. Toxicol Sci 92:456–463

    CAS  Google Scholar 

  90. Mirsattari SM, Hammond RR, Sharpe MD, Leung FY, Young GB (2004) Myoclonic status epilepticus following repeated oral ingestion of colloidal silver. Neurology 62:1408–1410

    CAS  Google Scholar 

  91. Chung YC, Chen IH, Chen CJ (2008) The surface modification of silver nanoparticles by phosphoryl disulfides for improved biocompatibility and intracellular uptake. Biomaterials 29:1807–1816

    CAS  Google Scholar 

  92. Pujalte I, Passagne I, Brouillaud B, Treguer M, Durand E, Ohayon-Courtes C et al (2011) Cytotoxicity and oxidative Stress induced by different metallic nanoparticles on human kidney cells. Part Fibre Toxicol 8:10

    CAS  Google Scholar 

  93. Zhao Y, Meng H, Chen Z, Zhao F, Chai ZF (2007) Dependence of nanotoxicity on nanoscale characteristics and strategies for reducing and eliminating nanotoxicity. In: Zhao YL, Nalwa HS (eds) Nanotoxicology. American Scientific, Stevenson Ranch, CA, pp 265–280

    Google Scholar 

  94. Galla JH (2000) Metabolic alkalosis. J Am Soc Nephrol 11:369–375

    CAS  Google Scholar 

  95. Williams AJ (1998) ABC of oxygen. Assessing and interpreting arterial blood gases and acid–base balance. Br Med J 317:1213–1216

    CAS  Google Scholar 

  96. Tao TY, Liu F, Klomp L, Wijmenga C, Gitlin JD (2003) The copper toxicosis gene product Murr 1 directly interacts with the Wilson disease protein. J Biol Chem 278:41593–41596

    CAS  Google Scholar 

  97. Meng H, Chen Z, Xing G, Yuan H, Chen C, Zhao F et al (2007) Ultrahigh reactivity provokes nanotoxicity: explanation of oral toxicity of nano-copper particles. Toxicol Lett 175:102–110

    CAS  Google Scholar 

  98. Li L, Zhu YJ (2006) High chemical reactivity of silver nanoparticles toward hydrochloric acid. J Colloid Interface Sci 303:415–418

    CAS  Google Scholar 

  99. Driscoll KE, Lindenschmidt RC, Maurer JK, Higgins JM, Ridder G (1990) Pulmonary response to silica or titanium dioxide: inflammatory cells, alveolar macrophage-derived cytokines, and histopathology. Am J Respir Cell Mol Biol 2:381–390

    CAS  Google Scholar 

  100. Ferin J, Oberdorster G (1985) Biological effects and toxicity assessment of titanium dioxides: anatase and rutile. Am Ind Hyg Assoc J 46:69–72

    CAS  Google Scholar 

  101. Bermudez E, Mangum JB, Asgharian B, Wong BA, Reverdy EE, Janszen DB et al (2002) Long-term pulmonary responses of three laboratory rodent species to subchronic inhalation of pigmentary titanium dioxide particles. Toxicol Sci 70:86–97

    CAS  Google Scholar 

  102. Bermudez E, Mangum JB, Wong BA, Asgharian B, Hext PM, Warheit DB et al (2004) Pulmonary responses of mice, rats, and hamsters to subchronic inhalation of ultrafine titanium dioxide particles. Toxicol Sci 77:347–357

    CAS  Google Scholar 

  103. Warheit DB, Webb TR, Reed KL (2003) Pulmonary toxicity studies with TiO2 particles containing various commercial coatings. Toxicologist 72:298A

    Google Scholar 

  104. Warheit DB, Webb TR, Reed KL, Frerichs S, Sayes CM (2007) Pulmonoary toxicity study in rats with three forms of ultrafine-TiO2 particles: differential responses related to surface properties. Toxicology 230:90–104

    CAS  Google Scholar 

  105. Li J, Li Q, Xu J, Li J, Cai X, Liu R et al (2007) Comparative study on the acute pulmonary toxicity induced by 3 and 20 nm TiO2 primary particles in mice. Environ Toxicol Pharmacol 24:239–244

    Google Scholar 

  106. Ratnam DV, Ankola DD, Bhardwaj V, Sahana DK, Kumar MNVR (2006) Role of antioxidants in prophylaxis and therapy: a pharmaceutical perspective. J Control Release 113:189–207

    CAS  Google Scholar 

  107. Ankola DD, Viswanand B, Bhardwaj V, Ramarao P, Kumar MNVR (2007) Development of potent oral nanoparticulate formulation of coenzyme Q 10 for treatment of hypertension: can the simple nutritional supplements be used as first line therapeutic agents for prophylaxis/therapy? Eur J Pharm Biopharm 67:361–369

    CAS  Google Scholar 

  108. Shaikh J, Ankola DD, Beniwal V, Singh D, Kumar MNVR (2009) Nanoparticle encapsulation improves oral bioavailability of curcumin by at least 9-fold when compared to curcuminn administered with piperine as absorption enhancer. Eur J Pharm Sci 37:223–230

    CAS  Google Scholar 

  109. Bala I, Bhardwaj V, Hariharan S, Kharade SV, Roy N, Kumar MNVR (2006) Sustained release nanoparticulate formulation containing antioxidant-ellagic acid as potential prophylaxix system for oral administration. J Drug Target 14:27–34

    CAS  Google Scholar 

  110. Bala I, Bhardwaj V, Hariharan S, Sitterberg S, Bakowsky U, Kumar MNVR (2005) Design of biodegradable nanoparticles: a novel approach to encapsulating poorly soluble phytochemical ellagic acid. Nanotechnology 16:2819–2822

    CAS  Google Scholar 

  111. Sonaje K, Italia JL, Sharma G, Bhardwaj V, Tikoo K, Kumar MNVR (2007) Development of biodegradable nanoparticles for oral delivery of ellagic acid and evaluation of their antioxidant efficacy against cyclosporine a-induced nehrotoxicity in rats. Pharm Res 24:899–908

    CAS  Google Scholar 

  112. Italia JL, Datta P, Ankola DD, Kumar MNVR (2008) Nanoparticles enhance per oral bioavailability of poorly available molecules: epigallocatechin gallate nanoparticles ameliorates cyclosporine induced nephrotoxicity in rats at three times lower dose than oral solution. J Biomed Nanotechnol 4:304–312

    CAS  Google Scholar 

  113. Chomouckaa J, Drbohlavovaa J, Babulab P, Adamc V, Hubaleka J, Provaznikd I et al (2010) Cell toxicity and preparation of streptavidin-modified iron nanoparticles and glutathione-modified cadmium-based quantum dots. Procedia Eng 5:922–925

    Google Scholar 

  114. Li J, Feng L, Fan L, Zha Y, Guo L, Zhang Q et al (2011) Targeting the brain with PEG-PLGA nanoparticles modified with phage-displayed peptides. Biomaterials 32:4943–4950

    CAS  Google Scholar 

  115. Lynch I, Cedervall T, Lundqvist M, Cabaleiro-Lago C, Linse S, Dawson KA (2007) The nanoparticle—protein complex as a biological entity; a complex fluids and surface science challenge for the 21st century. Adv Colloid Interface Sci 134–135:167–174

    Google Scholar 

  116. Cedervall T, Lynch I, Foy M, Berggård T, Donnelly SC, Cagney G et al (2007) Detailed identification of plasma proteins adsorbed on copolymer nanoparticles. Angew Chem Int Ed 46:5754–5756

    CAS  Google Scholar 

  117. Lynch I, Dawson KA (2008) Protein-nanoparticle interactions. Nanotoday 3:40–47

    CAS  Google Scholar 

  118. Borm PJA, Kreyling W (2004) Toxicological hazards of inhaled nanoparticles—potential implications for drug delivery. J Nanosci Nanotechnol 4:521–531

    CAS  Google Scholar 

  119. Kim HR, Andrieux K, Gil S, Taverna M, Chacun H, Desmaële D et al (2007) Translocation of poly(ethylene glycol-co-hexadecyl)cyanoacrylate nanoparticles into rat brain endothelial cells: role of apolipoproteins on receptor-mediated endocytosis. Biomacromolecules 8:793–799

    CAS  Google Scholar 

  120. Dutta D, Sundaram SK, Teeguarden JG, Riley BJ, Fifield LS, Jacobs JM et al (2007) Adsorbed proteins influence the biological activity and molecular targeting of nanomaterials. Toxicol Sci 100:303–315

    CAS  Google Scholar 

  121. Shen XC, Liou XY, Ye LP, Liang H, Wang ZY (2007) Spectroscopic studies on the interaction between human hemoglobin and CdS quantum dots. J Colloid Interface Sci 311:400–406

    CAS  Google Scholar 

  122. Mu Q, Li Z, Li X, Mishra SR, Zhang B et al (2009) Characterization of protein clusters of diverse magnetic nanoparticles and their dynamic interactions with human cells. J Phys Chem C 113:5390–5395

    CAS  Google Scholar 

  123. Karmali PP, Simberg D (2011) Interactions of nanoparticles with plasma proteins. Implications on clearance and toxicity of drug delivery system. Expert Opin Drug Deliv 8:343–357

    CAS  Google Scholar 

  124. Goppert TM, Muller RH (2005) Adsorption kinetics of plasma proteins on solid lipid nanoparticles for drug targeting. Int J Pharm 302:172–186

    CAS  Google Scholar 

  125. Gessner A, Lieske A, Paulke BR, Müller RH (2003) Functional groups on polystyrene model nanoparticles: influence on protein adsorption. J Biomed Mater Res 65:319–326

    Google Scholar 

  126. Kurath M, Maasen S (2006) Toxicology as a nanoscience?—disciplinary identities reconsidered. Part Fibre Toxicol 3:1–13

    Google Scholar 

  127. Kabanov AV (2006) Polymer genomics: an insight into pharmacology and toxicology of nanomedicines. Adv Drug Deliv Rev 58:1597–1621

    CAS  Google Scholar 

  128. Miller J (2003) Beyond biotechnology: FDA regulations of nanomedicine. Columbia Sci Technol Law Rev 4:E5

    Google Scholar 

Download references

Acknowledgments

The authors extend their appreciation to the Deanship of Scientific Research at King Saud University for funding the work through the research group project No. (RGP-VPP-005).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, New York

About this protocol

Cite this protocol

El-Ansary, A., Al-Daihan, S., Bacha, A.B., Kotb, M. (2013). Toxicity of Novel Nanosized Formulations Used in Medicine. In: Armstrong, D., Bharali, D. (eds) Oxidative Stress and Nanotechnology. Methods in Molecular Biology, vol 1028. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-475-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-475-3_4

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-474-6

  • Online ISBN: 978-1-62703-475-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics