Skip to main content

Lipid Peroxidation Due to In Vitro and In Vivo Exposure of Biological Samples to Nanoparticles

  • Protocol
  • First Online:
Oxidative Stress and Nanotechnology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1028))

Abstract

The increasing use of nanomaterials in biological applications raises numerous concerns about the dangers they might pose to living organisms. The rise in oxidative stress is usually the most readily observed effect induced by nanoparticles, with the measurement of lipid peroxidation levels being one of the most frequently used biological markers for its evaluation. Here, we describe the spectrophotometric and fluorimetric methods for determining the modifications of the malondialdehyde (MDA) level induced by many types of nanoparticles in in vitro and in vivo biological systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yang Z, Liu ZW, Allaker P, Reip P, Oxford J, Ahmad Z, Ren G (2010) A review of nanoparticle functionality and toxicity on the central nervous system. J R Soc Interface 7:S411–S422

    Article  CAS  Google Scholar 

  2. Long TC, Tajuba J, Sama P, Saleh N, Swartz C, Parker J, Hester S, Lowry GV, Veronesi B (2007) Nanosize titanium dioxide stimulates reactive oxygen species in brain microglia and damage neurons in vitro. Environ Health Perspect 115:1631–1637

    Article  CAS  Google Scholar 

  3. Stearns R, Paulauskis JD, Godleski JJ (2001) Endocytosis of ultrafine particles by A549 cells. Am J Respir Cell Mol Biol 24:108–115

    Article  CAS  Google Scholar 

  4. Műhlfeld C, Rothen-Rutishauser B, Blank F, Vanhecke D, Ochs M, Gehr P (2008) Interactions of nanoparticles with pulmonary structures and cellular responses. AJP Lung Physiol 294:L817–L829

    Article  Google Scholar 

  5. Shukla R, Bansal V, Chaudhary M, Basu A, Bhonde RR, Sastry M (2005) Biocompatibility of gold nanoparticles and their endocytotic fate inside the cellular compartment: a microscopic overview. Langmuir 21:10644–106654

    Article  CAS  Google Scholar 

  6. Green FHY, Gehr P, Lee MM, Schürch S (2000) The role of surfactant in disease associated with particle exposure. In: Gehr P (ed) Particle-lung interaction. Marcel Dekker, New York, pp 533–576

    Google Scholar 

  7. Rothen-Rutishauser B, Schurch S, Gehr P (2007) Interaction of particles with membranes. In: Donaldson K, Borm P (eds) Toxicology of particles. CRC, Boca Raton, FL, pp 139–160

    Google Scholar 

  8. Taylor U, Klein S, Petersen S, Kues W, Barcikowski S, Rath D (2010) Nonendosomal cellular uptake of ligand-free, positively charged gold nanoparticles. Cytometry Part A 77A:439–446

    CAS  Google Scholar 

  9. Miserocchi G, Sancini G, Mantegazza F, Chiappino G (2008) Translocation pathways for inhaled asbestos fibers. Environ Health 7:8 p.

    Google Scholar 

  10. Droge W (2002) Free radicals in the physiological control of cell function. Physiol Rev 82:47–95

    CAS  Google Scholar 

  11. Qian HS, Guo HC, Ho PC, Mahendran R, Zhang Y (2009) Mesoporous-silica-coated up-­conversion fluorescent nanoparticles for photodynamic therapy. Small 5:2285–2290

    Article  CAS  Google Scholar 

  12. Niu H, Zhang D, Zhang S, Zhang X, Meng Z, Cai Y (2011) Humic acid coated Fe3O4 magnetic nanoparticles as highly efficient Fenton-­like catalyst for complete mineralization of sulfathiazole. J Hazardous Mat 190:559–565

    Article  CAS  Google Scholar 

  13. Jiin S-J, Chern C-L, Shen J-Y, Lin T-H (2000) Cadmium-induced liver, heart and spleen lipid peroxidation in rats and protection by selenium. Biol Trace Elem Res 78:219–230

    Article  Google Scholar 

  14. Radu M, Munteanu MC, Petrache S, Serban AI, Dinu D, Hermenean A, Sima C, Dinischiotu A (2010) The depletion of intracellular glutathione and increase of lipid peroxidation mediate the hematite nanoparticles-induced cytotoxicity in MRC-5 cells. Acta Biochem Pol 57:355–360

    CAS  Google Scholar 

  15. Klotz LO, Sies H (2009) Cellular generation of oxidants: relation to oxidative stress. In: Jacob C, Winyard PG (eds) Redox signaling and regulation in biology and medicine. Wiley-­VCH, Weinheim, pp 45–61

    Chapter  Google Scholar 

  16. Dhaunsi G, Paintlia MK, Kauer J, Turner R (2004) NADPH oxidase in human lung fibroblasts. J Biomed Sci 11:617–622

    Article  CAS  Google Scholar 

  17. Bedard K, Krause KH (2007) The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev 87:245–313

    Article  CAS  Google Scholar 

  18. Chen K, Kirber MT, Xiao H, Yang Y, Keaney JF (2008) Regulation of ROS signal transduction by NADPH oxidase 4 localization. J Cell Biol 181:1129–1139

    Article  CAS  Google Scholar 

  19. Josephy PD, Mannervik B (2006) Toxicology of oxygen in molecular toxicology. Oxford University Press, London

    Google Scholar 

  20. Ceconi C, Boraso A, Cargnoni A, Ferrari R (2003) Oxidative stress in cardiovascular disease: myth or fact? Arch Biochem Biophys 420:217–221

    Article  CAS  Google Scholar 

  21. Sohal RS, Mockett RJ, Orr WC (2002) Mechanism of aging: an appraisal of the oxidative stress hypothesis. Free Radic Biol Med 33:575–586

    Article  CAS  Google Scholar 

  22. Gutteridge JMC (1989) Free radicals in disease processes: a compilation of cause and consequence. Free Radic Res Commun 19:141–158

    Article  Google Scholar 

  23. Guéraud F, Atalay M, Bresgen N, Cipak A, Eckl PM, Huc L (2010) Chemistry and biochemistry of lipid peroxidation products. Free Radic Res 44:1098–1124

    Article  Google Scholar 

  24. Catala A (2010) A synopsis of the process of lipid peroxidation since the discovery of the essential fatty acids. Biochem Biophys Res Commun 399:318–323

    Article  CAS  Google Scholar 

  25. Niki E (2009) Lipid peroxidation: physiological levels and dual biological effects. Free Radic Biol Med 47:469–484

    Article  CAS  Google Scholar 

  26. Spiteller G (2010) Is lipid peroxidation of polyunsaturated acids the only source of free radicals that induce aging and age-related diseases? Rejuvenation Res 13:91–103

    Article  CAS  Google Scholar 

  27. Dmitriev LF, Titov VN (2010) Lipid peroxidation in relation to ageing and the role of endogenous aldehydes in diabetes and other age-related diseases. Ageing Res Rev 9:200–210

    Article  CAS  Google Scholar 

  28. Grotto D, Santa ML, Valentini J, Paniz C, Schmitt G, Garcia C, Pombum VJ, Rocha JBT, Farina M (2009) Importance of the lipid peroxidation biomarkers and methodological aspects for malondialdehyde quantification. Quim Nova 32:169–174

    Article  CAS  Google Scholar 

  29. Hecker M, Ullrich V (1989) On the mechanism of prostacyclin and thromboxane A2biosynthesis. J Biol Chem 264:141–150

    CAS  Google Scholar 

  30. Esterbauer H, Schaur RJ, Zollner H (1991) Chemistry and biochemistry of 4-­hydroxynonenal, malonaldehyde and related aldehydes. Free Rad Biol Med 11:81–128

    Article  CAS  Google Scholar 

  31. Halliwell B, Lee CY (2010) Using isoprostanes as biomarkers of oxidative stress: some rarely considered issues. Antioxid Redox Signal 13:145–156

    Article  CAS  Google Scholar 

  32. Møller P, Jacobsen NR, Folkmann JK, Danielsen PH, Mikkelsen L, Hemmingsen JG (2010) Role of oxidative damage in toxicity of particulates. Free Radic Res 44:1–46

    Article  Google Scholar 

  33. Del Rio D, Pellegrini N, Colombi B, Bianchi M, Serafini M, Torta F, Tegoni M, Musci M, Brighenti F (2003) Rapid fluorimetric method to detect total plasma malondialdehyde with mild derivatization conditions. Clin Chem 49:690–692

    Article  Google Scholar 

  34. Stocks J, Gutteridge JMC, Sharp RJ, Dormandy TL (1974) Assay using brain homogenate for measuring the antioxidant activity of biological fluids. Clin Sci Mol Med 47:215–222

    CAS  Google Scholar 

  35. Rusu C, Borsa C, Gradinaru D, Ionescu C (1990) The assessment of rat liver, brain and kidney homogenates peroxidation potentials, superoxide dismutase activity and oxidoreduction capacity in reference to age. Rom J Gerontol Geriat 11:125–136

    Google Scholar 

  36. Drabkin DL, Austin JH (1935) Spectrophotometric constants for common hemoglobin derivatives in human, dog and rabbit blood. J Biol Chem 112:51–65

    CAS  Google Scholar 

  37. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  38. Lowry OH, Rosenbrough NJ, Farr AL, Randall BJ (1951) Protein measurement with Folin phenol reagent. J Biol Chem 193:265–275

    CAS  Google Scholar 

Download references

Acknowledgement

This study was financially supported by the National Research Council of Higher Education, Romania, grant number 127TE/2010.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, New York

About this protocol

Cite this protocol

Dinischiotu, A., Stanca, L., Gradinaru, D., Petrache, S.N., Radu, M., Serban, A.I. (2013). Lipid Peroxidation Due to In Vitro and In Vivo Exposure of Biological Samples to Nanoparticles. In: Armstrong, D., Bharali, D. (eds) Oxidative Stress and Nanotechnology. Methods in Molecular Biology, vol 1028. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-475-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-475-3_10

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-474-6

  • Online ISBN: 978-1-62703-475-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics