Skip to main content

Quantum Dot-Based Single-Molecule Microscopy for the Study of Protein Dynamics

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1026))

Abstract

Real-time microscopic visualization of single molecules in living cells provides a molecular perspective of cellular dynamics, which is difficult to be observed by conventional ensemble techniques. Among various classes of fluorescent tags used in single-molecule tracking, quantum dots are particularly useful due to their unique photophysical properties. This chapter provides an overview of single quantum dot tracking for protein dynamic studies. First, we review the fundamental diffraction limit of conventional optical systems and recent developments in single-molecule detection beyond the diffraction barrier. Second, we describe methods to prepare water-soluble quantum dots for biological labeling and single-molecule microscopy experimental design. Third, we provide detailed methods to perform quantum dot-based single-molecule microscopy. This technical section covers three protocols including (1) imaging system calibration using spin-coated single quantum dots, (2) single quantum dot labeling in living cells, and (3) tracking algorithms for single-molecule analysis.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Dunn RC (1999) Near-field scanning optical microscopy. Chem Rev 99:2891–2928

    Article  CAS  Google Scholar 

  2. Gordon MP, Ha T, Selvin PR (2004) Single-molecule high-resolution imaging with photobleaching. Proc Natl Acad Sci USA 101:6462–6465

    Article  CAS  Google Scholar 

  3. Willig KI, Rizzoli SO, Westphal V, Jahn R, Hell SW (2006) STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis. Nature 440:935–939

    Article  CAS  Google Scholar 

  4. Huang B, Wang WQ, Bates M, Zhuang XW (2008) Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy. Science 319:810–813

    Article  CAS  Google Scholar 

  5. Zhang B, Zerubia J, Olivo-Marin JC (2007) Gaussian approximations of fluorescence microscope point-spread function models. Appl Opt 46:1819–1829

    Article  Google Scholar 

  6. Thomann D, Rines DR, Sorger PK, Danuser G (2002) Automatic fluorescent tag detection in 3D with super-resolution: application to the analysis of chromosome movement. J Microsc 208:49–64

    Article  CAS  Google Scholar 

  7. Cheezum MK, Walker WF, Guilford WH (2001) Quantitative comparison of algorithms for tracking single fluorescent particles. Biophys J 81:2378–2388

    Article  CAS  Google Scholar 

  8. Kubitscheck U, Kückmann O, Kues T, Peters R (2000) Imaging and tracking of single GFP molecules in solution. Biophys J 78:2170–2179

    Article  CAS  Google Scholar 

  9. Alivisatos P (2004) The use of nanocrystals in biological detection. Nat Biotechnol 22:47–52

    Article  CAS  Google Scholar 

  10. Chan WC, Nie S (1998) Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281:2016–2018

    Article  CAS  Google Scholar 

  11. Bruchez M, Moronne M, Gin P, Weiss S, Alivisatos AP (1998) Semiconductor nanocrystals as fluorescent biological labels. Science 281:2013–2016

    Article  CAS  Google Scholar 

  12. Rosenthal SJ, Tomlinson I, Adkins EM, Schroeter S, Adams S, Swafford L, McBride J, Wang Y, DeFelice LJ, Blakely RD (2002) Targeting cell surface receptors with ligand-conjugated nanocrystals. J Am Chem Soc 124:4586–4594

    Article  CAS  Google Scholar 

  13. Kim S, Lim YT, Soltesz EG, De Grand AM, Lee J, Nakayama A, Parker JA, Mihaljevic T, Laurence RG, Dor DM, Cohn LH, Bawendi MG, Frangioni JV (2004) Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping. Nat Biotechnol 22:93–97

    Article  CAS  Google Scholar 

  14. Chang JC, Tomlinson ID, Warnement MR, Iwamoto H, DeFelice LJ, Blakely RD, Rosenthal SJ (2011) A fluorescence displacement assay for antidepressant drug discovery based on ligand-conjugated quantum dots. J Am Chem Soc 133:17528–17531

    Article  CAS  Google Scholar 

  15. Nirmal M, Dabbousi BO, Bawendi MG, Macklin JJ, Trautman JK, Harris TD, Brus LE (1996) Fluorescence intermittency in single cadmium selenide nanocrystals. Nature 383:802–804

    Article  CAS  Google Scholar 

  16. Wang X, Ren X, Kahen K, Hahn MA, Rajeswaran M, Maccagnano-Zacher S, Silcox J, Cragg GE, Efros AL, Krauss TD (2009) Non-blinking semiconductor nanocrystals. Nature 459:686–689

    Article  CAS  Google Scholar 

  17. Zhang Q, Li Y, Tsien RW (2009) The dynamic control of kiss-and-run and vesicular reuse probed with single nanoparticles. Science 323:1448–1453

    Article  CAS  Google Scholar 

  18. Thompson MA, Lew MD, Badieirostami M, Moerner WE (2009) Localizing and tracking single nanoscale emitters in three dimensions with high spatiotemporal resolution using a double-helix point spread function. Nano Lett 10:211–218

    Article  Google Scholar 

  19. Dahan M, Levi S, Luccardini C, Rostaing P, Riveau B, Triller A (2003) Diffusion dynamics of glycine receptors revealed by single-quantum dot tracking. Science 302:442–445

    Article  CAS  Google Scholar 

  20. Cui B, Wu C, Chen L, Ramirez A, Bearer EL, Li W-P, Mobley WC, Chu S (2007) One at a time, live tracking of NGF axonal transport using quantum dots. Proc Natl Acad Sci USA 104:13666–13671

    Article  CAS  Google Scholar 

  21. Bouzigues C, Morel M, Triller A, Dahan M (2007) Asymmetric redistribution of GABA receptors during GABA gradient sensing by nerve growth cones analyzed by single quantum dot imaging. Proc Natl Acad Sci USA 104:11251–11256

    Article  CAS  Google Scholar 

  22. Fabien P, Xavier M, Gopal I, Emmanuel M, Hsiao-Ping M, Shimon W (2009) Dynamic partitioning of a glycosyl-phosphatidylinositol-anchored protein in glycosphingolipid-rich microdomains imaged by single-quantum dot tracking. Traffic 10:691–712

    Article  Google Scholar 

  23. Chang JC, Tomlinson ID, Warnement MR, Ustione A, Carneiro AM, Piston DW, Blakely RD, Rosenthal SJ (2012) Single molecule analysis of serotonin transporter regulation using antagonist-conjugated quantum dots reveals restricted, p38 MAPK-dependent mobilization underlying uptake activation. J Neurosci 32:8919–8929

    Article  Google Scholar 

  24. Murcia MJ, Minner DE, Mustata G-M, Ritchie K, Naumann CA (2008) Design of quantum dot-conjugated lipids for long-term, high-speed tracking experiments on cell surfaces. J Am Chem Soc 130:15054–15062

    Article  CAS  Google Scholar 

  25. Tada H, Higuchi H, Wanatabe TM, Ohuchi N (2007) In vivo real-time tracking of single quantum dots conjugated with monoclonal anti-HER2 antibody in tumors of mice. Cancer Res 67:1138–1144

    Article  CAS  Google Scholar 

  26. Ehrensperger M-V, Hanus C, Vannier C, Triller A, Dahan M (2007) Multiple association states between glycine receptors and gephyrin identified by SPT analysis. Biophys J 92:3706–3718

    Article  CAS  Google Scholar 

  27. Jaqaman K, Loerke D, Mettlen M, Kuwata H, Grinstein S, Schmid SL, Danuser G (2008) Robust single-particle tracking in live-cell time-lapse sequences. Nat Methods 5:695–702

    Article  CAS  Google Scholar 

  28. Smith CS, Joseph N, Rieger B, Lidke KA (2010) Fast, single-molecule localization that achieves theoretically minimum uncertainty. Nat Methods 7:373–375

    Article  CAS  Google Scholar 

  29. Ram S, Prabhat P, Chao J, Sally Ward E, Ober RJ (2008) High accuracy 3D quantum dot tracking with multifocal plane microscopy for the study of fast intracellular dynamics in live cells. Biophys J 95:6025–6043

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Drs. David Piston and Sam Wells for helpful advice with single-quantum-dot tracking experimental setup. We thank colleagues in the group, especially to Dr. James McBride and Oleg Kovtun, for helpful discussions and suggestions. This work was supported by grants from National Institutes of Health (R01EB003778).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this protocol

Cite this protocol

Chang, J.C., Rosenthal, S.J. (2013). Quantum Dot-Based Single-Molecule Microscopy for the Study of Protein Dynamics. In: Rosenthal, S., Wright, D. (eds) NanoBiotechnology Protocols. Methods in Molecular Biology, vol 1026. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-468-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-468-5_6

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-467-8

  • Online ISBN: 978-1-62703-468-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics