Advertisement

Reliable Methods for Silica Coating of Au Nanoparticles

  • Isabel Pastoriza-Santos
  • Luis M. Liz-Marzán
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1025)

Abstract

The inherent properties of silica, such as optical transparency, high biocompatibility, chemical and colloidal stability, controllable porosity, and easy surface modification, provide silica materials with a tremendous potential in biomedicine. Therefore, the coating of Au nanoparticles with silica largely contributes to enhance the important applications of metal nanoparticles in biomedicine. We describe in this chapter a number of reliable strategies that have been reported for silica coating of different types of Au nanoparticles. All descriptions are based on tested protocols and are expected to provide a reference for scientists with an interest in this field.

Key words

Au nanoparticles Silica coating Core-shell Surface modification Optical properties 

Notes

Acknowledgments

This work has been funded by the Spanish Xunta de Galicia/FEDER (grant 10 PXIB 314 218 PR) and MINECO/FEDER (grant MAT2010-15374). LML-M acknowledges the ERC for an Advanced grant (NANODIRECT, grant number CP-FP 213948–2). The authors would like to thank Sara Abalde-Cela, Cristina Fernández-López, Sergio Rodal and Jorge Pérez-Juste, Ana M. Sánchez-Iglesias for their contributions and comments.

References

  1. 1.
    See special issue devoted to gold published in Chem. Soc. Rev. (2008, volume 37)Google Scholar
  2. 2.
    Kreibig U, Vollmer M (1996) Optical properties of metal clusters. Springer, BerlinGoogle Scholar
  3. 3.
    Mulvaney P (1996) Surface plasmon spectroscopy of nanosized metal particles. Langmuir 12:788–800CrossRefGoogle Scholar
  4. 4.
    Kelly KL, Coronado E, Zhao LL et al (2003) The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J Phys Chem B 107:668–677CrossRefGoogle Scholar
  5. 5.
    Liz-Marzán LM (2006) Tailoring surface plasmons through the morphology and assembly of metal nanoparticles. Langmuir 22:32–41CrossRefGoogle Scholar
  6. 6.
    Dreaden EC, Alkilany AM, Huang X et al (2012) The golden age: gold nanoparticles for biomedicine. Chem Soc Rev 41:2740–2779CrossRefGoogle Scholar
  7. 7.
    Giljohann DA, Seferos DS, Daniel WL et al (2010) Gold nanoparticles for biology and medicine. Angew Chem Int Ed 49:3280–3294CrossRefGoogle Scholar
  8. 8.
    Rosi NL, Mirkin CA (2005) Nanostructures in biodiagnostics. Chem Rev 105:1547–1562CrossRefGoogle Scholar
  9. 9.
    Abalde-Cela S, Aldeanueva-Potel P, Mateo-Mateo C et al (2010) SERS biomedical applications of plasmonic colloidal particles. J Royal Soc Interface 7:S435–S450CrossRefGoogle Scholar
  10. 10.
    Sepúlveda B, Angelomé PC, Lechuga LM et al (2009) LSPR-based nanobiosensors. Nano Today 4(3):244–251CrossRefGoogle Scholar
  11. 11.
    Dykman L, Khlebtsov N (2012) Gold nanoparticles in biomedical applications: recent advances and perspectives. Chem Soc Rev 41:2256–2282CrossRefGoogle Scholar
  12. 12.
    Ghosh P, Han G, De M et al (2008) Gold nanoparticles in delivery applications. Adv Drug Deliv Rev 60:1307–1315CrossRefGoogle Scholar
  13. 13.
    Halas N (2008) Nanoscience under Glass: The versatile chemistry of silica nanostructures. ACS Nano 2:179–183CrossRefGoogle Scholar
  14. 14.
    Liu SH, Han MY (2005) Synthesis, functionalization, and bioconjugation of monodisperse, silica-coated gold nanoparticles: robust bioprobes. Adv Funct Mater 15:961–967CrossRefGoogle Scholar
  15. 15.
    Luo T, Huang P, Gao G et al (2011) Mesoporous silica-coated gold nanorods with embedded indocyanine green for dual mode X-ray CT and NIR fluorescence imaging. Opt Express 19:17030–17039CrossRefGoogle Scholar
  16. 16.
    Rodríguez-Lorenzo L, Krpetic Z, Barbosa S et al (2011) Intracellular mapping with SERS-encoded gold nanostars. Integr Biol 3:922–926CrossRefGoogle Scholar
  17. 17.
    Zavaleta CL, Smith BR, Walton I et al (2009) Multiplexed imaging of surface enhanced Raman scattering nanotags in living mice using noninvasive Raman spectroscopy. Proc Natl Acad Sci USA 106:13511–13516CrossRefGoogle Scholar
  18. 18.
    Yang X, Liu X, Liu Z et al (2012) Near-Infrared light-triggered, targeted drug delivery to cancer cells by aptamer gated nanovehicles. Adv Mater 24:2890–2895CrossRefGoogle Scholar
  19. 19.
    Lal S, Clare SE, Halas NJ (2008) Nanoshell-enabled photothermal therapy: impending clinical impact. Acc Chem Res 41:1842–1851CrossRefGoogle Scholar
  20. 20.
    Fales AM, Yuan H, Vo-Dinh T (2011) Silica-coated gold nanostars for combined surface-enhanced Raman scattering (SERS) detection and singlet-oxygen generation: A potential nanoplatform for theranostics. Langmuir 27:12186–12190CrossRefGoogle Scholar
  21. 21.
    Zhang Z, Wang L, Wang J et al (2012) Theranostics: mesoporous silica-coated gold nanorods as a light-mediated multifunctional theranostic platform for cancer treatment. Adv Mater 24:1418–1423CrossRefGoogle Scholar
  22. 22.
    Liz-Marzán LM, Giersig M, Mulvaney P (1996) Synthesis of nanosized gold−silica core−shell particles. Langmuir 12:4329–4335CrossRefGoogle Scholar
  23. 23.
    Stöber W, Fink A, Bohn E (1968) Controlled growth of monodisperse silica spheres in the micron size range. J Colloid Interface Sci 6:62–69CrossRefGoogle Scholar
  24. 24.
    Enüstün BV, Turkevich J (1963) Coagulation of colloidal gold. J Am Chem Soc 85:3317–3328CrossRefGoogle Scholar
  25. 25.
    Gorelikov I, Matsuura N (2008) Single-step coating of mesoporous silica on cetyltrimethyl ammonium bromide-capped nanoparticles. Nano Lett 8:369–373CrossRefGoogle Scholar
  26. 26.
    Wong YJ, Zhu L, Teo WS et al (2011) Revisiting the Stöber method: Inhomogeneity in silica shells. J Am Chem Soc 133:11422–11425CrossRefGoogle Scholar
  27. 27.
    Liu M, Guyot-Sionnest P (2005) Mechanism of silver(I)-assisted growth of gold nanorods and bipyramids. J Phys Chem B 109:22192–22200CrossRefGoogle Scholar
  28. 28.
    Graf C, Vossen DLJ, Imhof A et al (2003) A general method to coat colloidal particles with silica. Langmuir 19:6693–6700CrossRefGoogle Scholar
  29. 29.
    Wiley B, Sun Y, Mayers B et al (2005) Shape-controlled synthesis of metal nanostructures: the case of silver. Chem Eur J 11:454–463CrossRefGoogle Scholar
  30. 30.
    Pastoriza-Santos I, Liz-Marzán LM (2009) N, N-dimethylformamide as a reaction medium for metal nanoparticle synthesis. Adv Funct Mater 19:679–688CrossRefGoogle Scholar
  31. 31.
    Yin YD, Lu Y, Sun YG et al (2002) Silver Nanowires can be directly coated with amorphous silica to generate well-controlled coaxial nanocables of silver/silica. Nano Lett 2:427–430CrossRefGoogle Scholar
  32. 32.
    Pastoriza-Santos I, Sánchez-Iglesias A, García de Abajo FJ et al (2007) Environmental optical sensitivity of gold nanodecahedra. Adv Funct Mater 17:1443–1450CrossRefGoogle Scholar
  33. 33.
    Guerrero-Martínez A, Barbosa S, Pastoriza-Santos I et al (2011) Nanostars shine bright for you. Colloidal synthesis, properties and applications of branched metallic nanoparticles. Curr Op Colloid Interface Sci 16:118–127CrossRefGoogle Scholar
  34. 34.
    Kumar PS, Pastoriza-Santos I, Rodríguez-González B et al (2008) High-yield synthesis and optical response of gold nanostars. Nanotechnology 19(1):015606CrossRefGoogle Scholar
  35. 35.
    Barbosa S, Agrawal A, Pastoriza-Santos I et al (2010) Tuning size and sensing properties in colloidal gold nanostars. Langmuir 26:14943–14950CrossRefGoogle Scholar
  36. 36.
    Pastoriza-Santos I, Pérez-Juste J, Liz-Marzán LM (2006) Silica-coating and hydrophobation of CTAB- stabilized gold nanorods. Chem Mater 18:2465–2467CrossRefGoogle Scholar
  37. 37.
    Schneider G, Decher G (2004) From functional core/shell nanoparticles prepared via layer-by-layer deposition to empty nanospheres. Nano Lett 4:1833–1839CrossRefGoogle Scholar
  38. 38.
    Gittins DI, Caruso F (2001) Tailoring the polyelectrolyte coating of metal nanoparticles. J Phys Chem B 105:6846–6852CrossRefGoogle Scholar
  39. 39.
    Nikoobakht B, El-Sayed MA (2003) Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem Mater 15:1957–1962CrossRefGoogle Scholar
  40. 40.
    Fernández-López C, Mateo-Mateo C, Alvarez-Puebla RA et al (2009) Highly controlled silica Coating of PEG-capped metal nanoparticles and preparation of SERS-encoded particles. Langmuir 25:13894–13899CrossRefGoogle Scholar
  41. 41.
    Rodríguez-Fernández J, Pérez-Juste J, García de Abajo FJ et al (2006) Seeded growth of submicron Au colloids with quadrupole plasmon resonance modes. Langmuir 22:7007–7010CrossRefGoogle Scholar
  42. 42.
    Jana NR (2003) Nanorod shape separation using surfactant assisted self-assembly. Chem Commun (15) 1950–1951Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Isabel Pastoriza-Santos
    • 1
  • Luis M. Liz-Marzán
    • 2
  1. 1.Departamento de Química FísicaCampus Universitario, Universidade de VigoBilbaoSpain
  2. 2.CIC biomaGUNEDonostia - San, SebastiánSpain

Personalised recommendations