Water-Solubilization and Functionalization of Semiconductor Quantum Dots

  • Christina M. Tyrakowski
  • Adela Isovic
  • Preston T. Snee
Part of the Methods in Molecular Biology book series (MIMB, volume 1025)


Semiconductor quantum dots (QDs) are highly fluorescent nanocrystals that have abundant potential for uses in biological imaging and sensing. However, the best materials are synthesized in hydrophobic surfactants that prevent direct aqueous solubilization. While several methods have been developed to impart water-solubility, an aqueous QD dispersion has no inherent useful purpose and must be functionalized further. Due to the colloidal nature of QD dispersions, traditional methods of chemical conjugation in water either have low yields or cause irreversible precipitation of the sample. Here, we describe several methods to water-solubilize QDs and further functionalize the materials with chemical and/or biological vectors.

Key words

Quantum dot Semiconductor nanocrystal Cap-exchange Encapsulation Functionalization Carbodiimide coupling 



This work was supported by the ACS PRF (50859-ND10) and by funds from the University of Illinois at Chicago. We would like to thank Prof. Hedi Mattoussi for helpful discussions concerning the synthesis of cap-exchanged CdSe/CdZnS QDs.


  1. 1.
    Brus LE (1983) A simple model for the ionization potential, electron affinity, and aqueous redox potentials of small semiconductor crystallites. J Chem Phys 79:5566–5571CrossRefGoogle Scholar
  2. 2.
    Rossetti R, Nakahara S, Brus LE (1983) Quantum size effects in the redox potentials, resonance Raman-spectra, and electronic-spectra of CdS crystallites in aqueous-solution. J Chem Phys 79:1086–1088CrossRefGoogle Scholar
  3. 3.
    Ekimov AI, Onushchenko AA (1984) Size quantization of the electron energy spectrum in a microscopic semiconductor crystal. JETP Lett 40:1136Google Scholar
  4. 4.
    Klimov VI et al (2000) Optical gain and stimulated emission in nanocrystal quantum dots. Science 290:314–317CrossRefGoogle Scholar
  5. 5.
    Colvin VL, Schlamp MC, Alivisatos AP (1994) Light-emitting-diodes made from cadmium selenide nanocrystals and a semiconducting polymer. Nature 370:354–357CrossRefGoogle Scholar
  6. 6.
    Huynh WU, Dittmer JJ, Alivisatos AP (2002) Hybrid nanorod-polymer solar cells. Science 295:2425–2427CrossRefGoogle Scholar
  7. 7.
    Hines MA, Guyot-Sionnest P (1996) Synthesis and characterization of strongly luminescing ZnS-capped CdSe nanocrystals. J Phys Chem 100:468–471CrossRefGoogle Scholar
  8. 8.
    Michalet X et al (2005) Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307:538–544CrossRefGoogle Scholar
  9. 9.
    Snee PT et al (2006) A ratiometric CdSe/ZnS nanocrystal pH sensor. J Am Chem Soc 128:13320–13321CrossRefGoogle Scholar
  10. 10.
    Medintz IL et al (2003) Self-assembled nanoscale biosensors based on quantum dot FRET donors. Nat Mater 2:630–638CrossRefGoogle Scholar
  11. 11.
    Liu D, Snee PT (2011) Water soluble semiconductor nanocrystals cap exchanged with metallated ligands. ACS Nano 5:546–550CrossRefGoogle Scholar
  12. 12.
    Wu XY et al (2003) Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots. Nat Biotechnol 21:41–46CrossRefGoogle Scholar
  13. 13.
    Mattoussi H et al (2000) Self-assembly of CdSe-ZnS quantum dot bioconjugates using an engineered recombinant protein. J Am Chem Soc 122:12142–12150CrossRefGoogle Scholar
  14. 14.
    Shen HY, Jawaid AM, Snee PT (2009) Poly(ethylene glycol) carbodiimide coupling reagents for the biological and chemical functionalization of water-soluble nanoparticles. ACS Nano 3:915–923CrossRefGoogle Scholar
  15. 15.
    Snee PT et al (2011) Quantifying quantum dots with Förster resonant energy transfer. J Phys Chem C 115:19578–19582CrossRefGoogle Scholar
  16. 16.
    Nguyen T, Francis MB (2003) Practical synthetic route to functionalized rhodamine dyes. Org Lett 5:3245–3248CrossRefGoogle Scholar
  17. 17.
    Gunsalus IC, Barton LS, Gruber W (1956) Biosynthesis and structure of lipoic acid derivatives. J Am Chem Soc 78:1763–1768CrossRefGoogle Scholar
  18. 18.
    Susumu K, Mei BC, Mattoussi H (2009) Multifunctional ligands based on dihydrolipoic acid and polyethylene glycol to promote biocompatibility of quantum dots. Nat Protoc 4:424–436CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Christina M. Tyrakowski
    • 1
  • Adela Isovic
    • 1
  • Preston T. Snee
    • 1
  1. 1.University of Illinois at ChicagoChicagoUSA

Personalised recommendations