Conjugation of Nanoparticles to Proteins

  • Marie-Eve Aubin-Tam
Part of the Methods in Molecular Biology book series (MIMB, volume 1025)


Nanoparticle–protein conjugates hold great promise in biomedical applications. Diverse strategies have been developed to link nanoparticles to proteins. This chapter describes a method to assemble and purify nanoparticle–protein conjugates. First, stable and biocompatible 1.5nm gold nanoparticles are synthesized. Conjugation of the nanoparticle to the protein is then achieved via two different approaches that do not require heavy chemical modifications or cloning: cysteine–gold covalent bonding, or electrostatic attachment of the nanoparticle to charged groups of the protein. Co-functionalization of the nanoparticle with PEG thiols is recommended to help protein folding. Finally, structural characterization is performed with circular dichroism, as this spectroscopy technique has proven to be effective at examining protein secondary structure in nanoparticle–protein conjugates.

Key words

Nanoparticles Proteins Bioconjugates Agarose gel electrophoresis Circular dichroism 


  1. 1.
    Chah S, Hammond MR, Zare RN (2005) Gold nanoparticles as a colorimetric sensor for protein conformational changes. Chem Biol 12:323–328CrossRefGoogle Scholar
  2. 2.
    De M et al (2009) Sensing of proteins in human serum using conjugates of nanoparticles and green fluorescent protein. Nat Chem 1:461–465CrossRefGoogle Scholar
  3. 3.
    Willner I, Baron R, Willner B (2007) Integrated nanoparticle-biomolecule systems for biosensing and bioelectronics. Biosens Bioelectron 22:1841–1852CrossRefGoogle Scholar
  4. 4.
    Bhattacharyya S et al (2011) Efficient delivery of gold nanoparticles by dual receptor targeting. Adv Mater 23:5034–5038CrossRefGoogle Scholar
  5. 5.
    Park S, Kimberly H-S (2010) Enhancement of in vitro translation by gold nanoparticle-DNA conjugates. ACS Nano 4:2555–2560CrossRefGoogle Scholar
  6. 6.
    Aubin M-E, Morales DG, Hamad-Schifferli K (2005) Labeling Ribonuclease S with a 3 nm Au nanoparticle by two-step assembly. Nano Lett 5:519–522CrossRefGoogle Scholar
  7. 7.
    Hu M et al (2008) Gold nanoparticle-protein arrays improve resolution for cryo-electron microscopy. J Struct Biol 161:83–91CrossRefGoogle Scholar
  8. 8.
    Zheng M, Li Z, Huang X (2004) Ethylene glycol monolayer protected nanoparticles: synthesis, characterization, and interactions with biological molecules. Langmuir 20:4226–4235CrossRefGoogle Scholar
  9. 9.
    Faulk WP, Taylor GM (1971) An immunocolloid method for the electron microscope. Immunochemistry 8:1081–1083CrossRefGoogle Scholar
  10. 10.
    Geoghegan WD, Ackerman GA (1977) Adsorption of horseradish peroxidase, ovomucoid and anti-immunoglobulin to colloidal gold for the indirect detection of concanavalin A, wheat germ agglutinin and goat anti-human immunoglobulin G on cell surfaces at the electron microscopic level: a new method, theory and application. J Histochem Cytochem 25:1187–1200CrossRefGoogle Scholar
  11. 11.
    Aubin-Tam M-E, Hwang W, Hamad-Schifferl K (2009) Site-directed nanoparticle labeling of cytochrome c. Proc Natl Acad Sci USA 106:4095–4100CrossRefGoogle Scholar
  12. 12.
    Montesano-Roditis L et al (2001) Cryo-electron microscopic localization of protein L7/L12 within the Escherichia coli 70 S ribosome by difference mapping and Nanogold labeling. J Biol Chem 276:14117–14123Google Scholar
  13. 13.
    Buechel C et al (2001) Localisation of the PsbH subunit in photosystem II: a new approach using labelling of His-tags with a Ni2+-NTA gold cluster and single particle analysis. J Mol Biol 312:371–379CrossRefGoogle Scholar
  14. 14.
    Ackerson CJ et al (2006) Rigid, specific, and discrete gold nanoparticle/antibody conjugates. J Am Chem Soc 128:2635–2640CrossRefGoogle Scholar
  15. 15.
    Zanchet D et al (2001) Electrophoretic isolation of discrete Au nanocrystal/DNA conjugates. Nano Lett 1:32–35CrossRefGoogle Scholar
  16. 16.
    Mamedova NN et al (2001) Albumin-CdTe nanoparticle bioconjugates: preparation, structure, and interunit energy transfer with antenna effect. Nano Lett 1:281–286CrossRefGoogle Scholar
  17. 17.
    Aubin-Tam M-E, Hamad-Schifferli K (2005) Gold nanoparticle-cytochrome c complexes: the effect of nanoparticle ligand charge on protein structure. Langmuir 21:12080–12084CrossRefGoogle Scholar
  18. 18.
    Tellechea E et al (2012) Engineering the interface between glucose oxidase and nanoparticles. Langmuir 28:5190–5200CrossRefGoogle Scholar
  19. 19.
    Vertegel A, Siegel RW, Dordick JS (2004) Silica nanoparticle size influences the structure and enzymatic activity of adsorbed lysozyme. Langmuir 20:6800–6807CrossRefGoogle Scholar
  20. 20.
    Srivastava S et al (2005) Controlled assembly of protein-nanoparticle composites through protein surface recognition. Adv Mater 17:617–621CrossRefGoogle Scholar
  21. 21.
    Weare WW et al (2000) Improved synthesis of small (dcore 1.5 nm) phosphine-stabilized gold nanoparticles. J Am Chem Soc 122:12890–12891CrossRefGoogle Scholar
  22. 22.
    Lundqvist M et al (2006) Induction of structure and function in a designed peptide upon adsorption on a silica nanoparticle. Angew Chem Int Ed 45:8169–8173CrossRefGoogle Scholar
  23. 23.
    Sreerama N, Woody RW (2004) Computation and analysis of protein circular dichroism spectra. Methods Enzymol 383:318–351CrossRefGoogle Scholar
  24. 24.
    Gerdova A, Kelly SM, Halling P (2011) Experimental test of absorption flattening correction for circular dichroism of particle suspensions. Chirality 23:574–579CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Marie-Eve Aubin-Tam
    • 1
  1. 1.Delft University of TechnologyDelftThe Netherlands

Personalised recommendations