Advertisement

Ligand Synthesis and Passivation for Silver and Large Gold Nanoparticles for Single-Particle-Based Sensing and Spectroscopy

  • Daniel Montiel
  • Emma V. Yates
  • Li Sun
  • Marissa M. Sampias
  • John Malona
  • Erik J. Sorensen
  • Haw Yang
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1025)

Abstract

Silver and large gold nanoparticles are more efficient scatterers than smaller particles, which can be advantageous for a variety of single-particle-based sensing and spectroscopic applications. The increased susceptibility to surface oxidation and the larger surface area of these particles, however, present challenges to colloid stability and controllable bio-conjugation strategies. In this chapter, ligand syntheses and particle passivation procedures for yielding stable and bio-conjugatable colloids of silver and large gold nanoparticles are described.

Key words

Gold nanoparticles Silver nanoparticles Bio-conjugation Nanoparticle passivation 

Notes

Acknowledgements

This work was supported by the Department of Energy and the NIH-NIGMS.

References

  1. 1.
    Kreibig U, Vollmer M (1995) Optical properties of metal clusters. Springer, BerlinCrossRefGoogle Scholar
  2. 2.
    Kelly KL, Coronado E, Zhao LL, Schatz GC (2003) The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J Phys Chem B 107:668–677CrossRefGoogle Scholar
  3. 3.
    Cobley CM, Skrabalak SE, Campbell DJ, Xia Y (2009) Shape-controlled synthesis of silver nanoparticles for plasmonic and sensing applications. Plasmonics 4:171–179CrossRefGoogle Scholar
  4. 4.
    Turkevich J, Stevenson PC, Hillier J (1951) A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss Faraday Soc 11:55–75CrossRefGoogle Scholar
  5. 5.
    Kinkhabwala A, Yu Z, Fan S, Avlasevich Y, Müllen K, Moerner WE (2009) Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna. Nat Photon 3:654–657CrossRefGoogle Scholar
  6. 6.
    Roth J, Bendayan M, Orci L (1978) Ultrastructural localization of intracellular antigens by the use of protein A-gold complex. J Histochem Cytochem 26:1074–1081CrossRefGoogle Scholar
  7. 7.
    Link S, El-Sayed MA (2000) Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals. Int Rev Phys Chem 19:409–453CrossRefGoogle Scholar
  8. 8.
    Huang X, El-Sayed IH, Qian W, El-Sayed MA (2006) Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J Am Chem Soc 128:2115–2120CrossRefGoogle Scholar
  9. 9.
    Paciotti GF, Myer L, Weinreich D, Goia D, Pavel N, McLaughlin RE, Tamarkin L (2004) Colloidal gold: a novel nanoparticle vector for tumor directed drug delivery. Drug Deliv 11:169–183CrossRefGoogle Scholar
  10. 10.
    Nam J-M, Thaxton CS, Mirkin CA (2003) Nanoparticle-based bio-bar codes for the ultrasensitive detection of proteins. Science 301:1884–1886CrossRefGoogle Scholar
  11. 11.
    Nam J-M, Stoeva SI, Mirkin CA (2004) Bio-bar-code-based DNA detection with PCR-like sensitivity. J Am Chem Soc 126:5932–5933CrossRefGoogle Scholar
  12. 12.
    Sperling R, Gil P, Zhang F, Zanella M, Parak WJ (2008) Biological applications of gold nanoparticles. Chem Soc Rev 37:1896–1908CrossRefGoogle Scholar
  13. 13.
    Guo S, Dong S (2009) Biomolecule–nanoparticle hybrids for electrochemical biosensors. Trends Anal Chem 28:96–109CrossRefGoogle Scholar
  14. 14.
    Hill HD, Mirkin CA (2006) The bio-barcode assay for the detection of protein and nucleic acid targets using DTT-induced ligand exchange. Nat Prot 1:324–336CrossRefGoogle Scholar
  15. 15.
    Katz E, Willner I (2004) Integrated nanoparticle-biomolecule hybrid systems: synthesis, properties, and applications. Angew Chem Int Ed 43:6042–6108CrossRefGoogle Scholar
  16. 16.
    Khlebtsov NG, Dykman LA (2010) Optical properties and biomedical applications of plasmonic nanoparticles. J Quant Spectrosc Radiat Transfer 111:1–35CrossRefGoogle Scholar
  17. 17.
    Henglein A (1993) Physicochemical properties of small metal particles in solution: “microelectrode” reactions, chemisorption, composite metal particles, and the atom-to-metal transition. J Phys Chem 97:5457–5471CrossRefGoogle Scholar
  18. 18.
    Ivanova OS, Zamborini FP (2009) Size-dependent electrochemical oxidation of silver nanoparticles. J Am Chem Soc 132:70–72CrossRefGoogle Scholar
  19. 19.
    Wang D, Nap RJ, Lagzi I, Kowalczyk B, Han S, Grzybowski BA, Szleifer I (2011) How and why nanoparticle’s curvature regulates the apparent pKa of the coating ligands. J Am Chem Soc 113:2192–2197CrossRefGoogle Scholar
  20. 20.
    Hill HD, Millstone JE, Banholzer MJ, Mirkin CA (2009) The role radius of curvature plays in thiolated oligonucleotide loading on gold nanoparticles. ACS Nano 2:418–424CrossRefGoogle Scholar
  21. 21.
    Wang Z, Tan B, Hussain I, Schaeffer N, Wyatt MF, Brust M, Cooper AI (2007) Design and polymeric stabilizers for size-controlled synthesis of monodisperse gold nanoparticles in water. Langmuir 23:885–895CrossRefGoogle Scholar
  22. 22.
    Hurst SJ, Lytton-Jean AKR, Mirkin CA (2006) Maximizing DNA loading on a range of gold nanoparticle sizes. Anal Chem 78:8313–8318CrossRefGoogle Scholar
  23. 23.
    Demers LM, Mirkin CA, Mucic RC, Reynolds RA III, Letsinger RL, Elghanian R, Viswanadham G (2000) A fluorescence-based method for determining the surface coverage and hybridization efficiency of thiol-capped oligonucleotides bound to thin films and nanoparticles. Anal Chem 72:5535–5541CrossRefGoogle Scholar
  24. 24.
    Prasad BLV, Stoeva SI, Sorensen CM, Klabunde KJ (2002) Digestive ripening of thiolated gold nanoparticles: the effect of alkyl chain length. Langmuir 18:7515–7520CrossRefGoogle Scholar
  25. 25.
    Cosgrove T (ed) (2005) Colloid science principles, methods and applications. Blackwell, OxfordGoogle Scholar
  26. 26.
    Pakiari AH, Jamshidi Z (2010) Nature and strength of M–S bonds (M = Au, Ag, and Cu) in binary alloy gold clusters. J Phys Chem A 114:9212–9221CrossRefGoogle Scholar
  27. 27.
    Li Z, Jin R, Mirkin CA, Letsinger RL (2002) Multiple thiol-anchor capped DNA-gold nanoparticle conjugates. Nucl Acid Res 30:1558–1562CrossRefGoogle Scholar
  28. 28.
    Mei BC, Oh E, Susumu K, Farrell D, Mountziaris TJ, Mattoussi H (2009) Effectors of ligand coordination number and surface curvature on the stability of gold nanoparticles in aqueous solutions. Langmuir 25:10604–10611CrossRefGoogle Scholar
  29. 29.
    Muro E, Pons T, Lequeux N, Fragola A, Sanson N, Lenkei Z, Dubertret B (2010) Small and stable sulfobetaine zwitterionic quantum dots for functional live cell imaging. J Am Chem Soc 132:4556–4557CrossRefGoogle Scholar
  30. 30.
    Susumu K, Oh E, Delehanty JB, Blanco-Canosa JB, Johnson BJ, Jain V, Hervey WJ, Algar WR, Boeneman K, Dawson PE, Medintz IL (2011) Multifunctional compact zwitterionic ligands for preparing robust biocompatible semiconductor quantum dots and gold nanoparticles. J Am Chem Soc 133:9480–9496CrossRefGoogle Scholar
  31. 31.
    Park J, Nam J, Won N, Jin H, Jung S, Cho S-H, Kim S (2011) Compact and stable quantum dots with positive, negative, or zwitterionic surface: specific cell interactions and non-specific adsorptions by the surface charges. Adv Funct Mater 21:1558–1566CrossRefGoogle Scholar
  32. 32.
    Estephan ZG, Jaber JA, Schlenoff JB (2010) Zwitterion-stabilized silica nanoparticles: toward nonstick nano. Langmuir 26:16884–16889CrossRefGoogle Scholar
  33. 33.
    Rouhana LL, Jaber JA, Schlenoff JB (2007) Aggregation-resistant water-soluble gold nanoparticles. Langmuir 23:12799–12801CrossRefGoogle Scholar
  34. 34.
    Weber PC, Ohlendorf DH, Wendoloski JJ, Salemme FR (1989) Structural origins of high-affinity biotin binding to streptavidin. Science 243:85–88CrossRefGoogle Scholar
  35. 35.
    Kawde A-N, Wang J (2003) Amplified electrical transduction of DNA hybridization based on polymeric beads loaded with multiple gold nanoparticle tags. Electroanalysis 16:101–107CrossRefGoogle Scholar
  36. 36.
    Kerman K, Chikae M, Yamamura S, Tamiya E (2007) Gold nanoparticle-based electrochemical detection of protein phosphorylation. Anal Chim Acta 588:26–33CrossRefGoogle Scholar
  37. 37.
    Zhu D, Tang Y, Xing D, Chem WR (2008) PCR-free quantitative detection of genetically modified organism from raw materials. An electrochemiluminescence-based bio bar code method. Anal Chem 80:3566–3571CrossRefGoogle Scholar
  38. 38.
    Prime KL, Whitesides GM (1991) Self-assembled organic monolayers: model systems for studying adsorption of proteins at surfaces. Science 252:1164–1167CrossRefGoogle Scholar
  39. 39.
    Marx KA (2003) Quartz crystal microbalance: a useful tool for studying thin polymer films and complex biomolecular systems at the solution–surface interface. Biomacromolecules 4:1099CrossRefGoogle Scholar
  40. 40.
    Kim E-Y, Stanton J, Vega RA, Kunstman KJ, Mirkin CA, Wolinsky SM (2006) A real-time PCR-based method for determining the surface coverage of thiol-capped oligonucleotides bound onto gold nanoparticles. Anal Chem 34:e54Google Scholar
  41. 41.
    Park S, Hamad-Schifferli K (2010) Nanoscale interfaces to biology. Curr Opin Chem Biol 14:616–622CrossRefGoogle Scholar
  42. 42.
    Zanchet D, Micheel CM, Parak WJ, Gerion D, Williams SC, Alivisatos AP (2002) Electrophoretic and structural studies of DNA-directed Au nanoparticle groups. J Phys Chem B 106:11758–11763CrossRefGoogle Scholar
  43. 43.
    Surugau N, Urban PL (2009) Electrophoretic methods for separation of nanoparticles. J Sep Sci 32:1889–1906CrossRefGoogle Scholar
  44. 44.
    Pillai ZS, Kamat PV (2004) What factors control the size and shape of silver nanoparticles in the citrate ion reduction method. J Phys Chem B 108:945–951CrossRefGoogle Scholar
  45. 45.
    Qin Y, Ji X, Jing J, Liu H, Wu H, Yang W (2010) Size control over spherical silver nanoparticles by ascorbic acid reduction. Colloids Surf A Physicochem Eng Asp 372:172–176CrossRefGoogle Scholar
  46. 46.
    Lee C, Meisel D (1982) Adsorption and surface-enhanced raman of dyes on silver and gold sols. J Phys Chem 86:3391–3395CrossRefGoogle Scholar
  47. 47.
    Evanoff DD Jr, Chumanov G (2004) Size-controlled synthesis of nanoparticles. 1.‘Silver-only’ aqueous suspensions via hydrogen reduction. J Phys Chem B 108:13948–13956CrossRefGoogle Scholar
  48. 48.
    Kreibig U, Genzel L (1985) Optical absorption of small metallic particles. Surf Sci 156:678–700CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Daniel Montiel
    • 1
  • Emma V. Yates
    • 1
  • Li Sun
    • 1
  • Marissa M. Sampias
    • 1
  • John Malona
    • 1
  • Erik J. Sorensen
    • 1
  • Haw Yang
    • 1
  1. 1.Princeton UniversityPrincetonUSA

Personalised recommendations