Zwitterion Siloxane to Passivate Silica Against Nonspecific Protein Adsorption

  • Zaki G. Estephan
  • Joseph B. Schlenoff
Part of the Methods in Molecular Biology book series (MIMB, volume 1025)


Passivating surfaces against protein adsorption is important for many biotechnological applications. Current approaches have been exploiting the use of zwitterions instead of poly(ethylene glycol) (PEG). Commonly used zwitterions are polymeric and are grafted onto surfaces using specialized polymerization techniques. Here we describe the synthesis of a monomeric zwitterion siloxane and its covalent attachment to silica surfaces (nanoparticle and planar) in a one-pot one-step aqueous method requiring no catalyst.

Key words

Silane Silica nanoparticle Silicon wafer Non-fouling Protein repellent surface 


  1. 1.
    West SL, Salvage JP, Lobb EJ, Armes SP, Billingham NC, Lewis AL, Hanlon GW, Lloyd AW (2004) The biocompatibility of crosslinkable copolymer coatings containing sulfobetaines and phosphobetaines. Biomaterials 25:1195–1204CrossRefGoogle Scholar
  2. 2.
    Emmenegger CR, Brynda E, Riedel T, Sedlakova Z, Houska M, Alles AB (2009) Interaction of blood plasma with antifouling surfaces. Langmuir 25:6328–6333CrossRefGoogle Scholar
  3. 3.
    Zhang Z, Chao T, Chen SF, Jiang SY (2006) Superlow fouling sulfobetaine and carboxybetaine polymers on glass slides. Langmuir 22:10072–10077CrossRefGoogle Scholar
  4. 4.
    Holmlin RE, Chen XX, Chapman RG, Takayama S, Whitesides GM (2001) Zwitterionic SAMs that resist nonspecific adsorption of protein from aqueous buffer. Langmuir 17:2841–2850CrossRefGoogle Scholar
  5. 5.
    Salloum DS, Olenych SG, Keller TCS, Schlenoff JB (2005) Vascular smooth muscle cells on polyelectrolyte multilayers: hydrophobicity-directed adhesion and growth. Biomacromolecules 6:161–167CrossRefGoogle Scholar
  6. 6.
    Zhang Z, Chen SF, Chang Y, Jiang SY (2006) Surface grafted sulfobetaine polymers via atom transfer radical polymerization as superlow fouling coatings. J Phys Chem B 110:10799–10804CrossRefGoogle Scholar
  7. 7.
    Cheng G, Li GZ, Xue H, Chen SF, Bryers JD, Jiang SY (2009) Zwitterionic carboxybetaine polymer surfaces and their resistance to long-term biofilm formation. Biomaterials 30:5234–5240CrossRefGoogle Scholar
  8. 8.
    Rouhana LL, Jaber JA, Schlenoff JB (2007) Aggregation-resistant water-soluble gold nanoparticles. Langmuir 23:12799–12801CrossRefGoogle Scholar
  9. 9.
    Jia G, Cao Z, Xue H, Xu Y, Jiang S (2009) Novel zwitterionic-polymer-coated silica nanoparticles. Langmuir 25:3196–3199CrossRefGoogle Scholar
  10. 10.
    Matsuura K, Ohno K, Kagaya S, Kitano H (2007) Carboxybetaine polymer-protected gold nanoparticles: high dispersion stability and resistance against non-specific adsorption of proteins. Macromol Chem Phys 208:862–873CrossRefGoogle Scholar
  11. 11.
    Estephan ZG, Jaber JA, Schlenoff JB (2010) Zwitterion-stabilized silica nanoparticles: toward nonstick nano. Langmuir 26:16884–16889CrossRefGoogle Scholar
  12. 12.
    Estephan ZG, Schlenoff PS, Schlenoff JB (2011) Zwitteration as an alternative to PEGylation. Langmuir 27:6794–6800CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Zaki G. Estephan
    • 1
  • Joseph B. Schlenoff
    • 2
  1. 1.Florida State UniversityTallahasseeUSA
  2. 2.Department of Chemistry and BiochemistryFlorida State UniversityTallahasseeUSA

Personalised recommendations