Advertisement

Formation and Characterization of the Nanoparticle–Protein Corona

  • Marco P. Monopoli
  • Andrzej S. Pitek
  • Iseult Lynch
  • Kenneth A. Dawson
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1025)

Abstract

Over the last decade the existence of “the corona,” a natural interface between nanomaterials and living matter in biological milieu, evolved from a vague concept into broadly recognized fact. This robust shell arises (to some extent) on the surface of all nanoparticles (NPs), even the ones designed to avoid its formation upon contact with biological fluids and confers a biological identity to the nanomaterials such that they can engage with cellular machinery. The NP corona consists of those proteins (and other biomolecules such as lipids and sugars) residing on the NP surface for a sufficient timescale to influence the NP’s properties and interactions with living systems. This chapter aims to provide simple protocols, as well as notes on potential pitfalls, to help researchers to perform basic experiments in this field as the basis for a more mechanistic approach to study and understand NP–protein corona complexes. This work has been supported by INSPIRE (Integrated NanoScience Platform for Ireland) funded by the Irish Government’s Programme for Research in Third Level Institutions, Cycle 4, National Development Plan 2007–2013, and 3MICRON (NMP-2009-LA-245572), NAMDIATREAM (NMP4-LA-2010-246479) and QualityNano (INFRA-2010-262163) funded by the European Commission 7th Framework Programme.

Key words

Nanoparticle Biological fluids Protein corona Dynamic light scattering Differential centrifugal sedimentation Z-potential TEM 

References

  1. 1.
    Cedervall T, Lynch I, Lindman S, Berggard T, Thulin E, Nilsson H, Dawson KA, Linse S (2007) Understanding the nanoparticle–protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles. Proc Natl Acad Sci USA 104:2050–2055CrossRefGoogle Scholar
  2. 2.
    Lynch I, Dawson KA (2008) Protein–nanoparticle interactions. Nano Today 3:40–47CrossRefGoogle Scholar
  3. 3.
    Monopoli MP, Walczyk D, Campbell A, Elia G, Lynch I, Baldelli Bombelli F, Dawson KA (2011) Physical–chemical aspects of protein corona: relevance to in vitro and in vivo biological impacts of nanoparticles. J Am Chem Soc 133:2525–2534CrossRefGoogle Scholar
  4. 4.
    Walczyk D, Bombelli FB, Monopoli MP, Lynch I, Dawson KA (2010) What the cell “sees” in bionanoscience. J Am Chem Soc 132:5761–5768CrossRefGoogle Scholar
  5. 5.
    Kapralov AA, Feng WH, Amoscato AA, Yanamala N, Balasubramanian K, Winnica DE, Kisin ER, Kotchey GP, Gou P, Sparvero LJ, Ray P, Mallampalli RK, Klein-Seetharaman J, Fadeel B, Star A, Shvedova AA, Kagan VE (2012) Adsorption of surfactant lipids by single-walled carbon nanotubes in mouse lung upon pharyngeal aspiration. ACS Nano 6:4147–4156CrossRefGoogle Scholar
  6. 6.
    Walkey CD, Chan WC (2012) Understanding and controlling the interaction of nanomaterials with proteins in a physiological environment. Chem Soc Rev 41:2780–2799CrossRefGoogle Scholar
  7. 7.
    Nel AE, Madler L, Velegol D, Xia T, Hoek EM, Somasundaran P, Klaessig F, Castranova V, Thompson M (2009) Understanding biophysicochemical interactions at the nano-bio interface. Nat Mater 8:543–557CrossRefGoogle Scholar
  8. 8.
    Tenzer S, Docter D, Rosfa S, Wlodarski A, Kuharev J, Rekik A, Knauer SK, Bantz C, Nawroth T, Bier C, Sirirattanapan J, Mann W, Treuel L, Zellner R, Maskos M, Schild H, Stauber RH (2011) Nanoparticle size is a critical physicochemical determinant of the human blood plasma corona: a comprehensive quantitative proteomic analysis. ACS Nano 5:7155–7167CrossRefGoogle Scholar
  9. 9.
    Martel J, Young D, Young A, Wu CY, Chen CD, Yu JS, Young JD (2011) Comprehensive proteomic analysis of mineral nanoparticles derived from human body fluids and analyzed by liquid chromatography-tandem mass spectrometry. Anal Biochem 418:111–125CrossRefGoogle Scholar
  10. 10.
    Zeng Z, Patel J, Lee SH, McCallum M, Tyagi A, Yan M, Shea KJ (2012) Synthetic polymer nanoparticle–polysaccharide interactions: a systematic study. J Am Chem Soc 134:2681–2690CrossRefGoogle Scholar
  11. 11.
    Milani S, Baldelli Bombelli F, Pitek AS, Dawson KA, Radler J (2012) Reversible versus irreversible binding of transferrin to polystyrene nanoparticles: soft and hard corona. ACS Nano 6:2532–2541CrossRefGoogle Scholar
  12. 12.
    Dobrovolskaia MA, Patri AK, Zheng J, Clogston JD, Ayub N, Aggarwal P, Neun BW, Hall JB, McNeil SE (2009) Interaction of colloidal gold nanoparticles with human blood: effects on particle size and analysis of plasma protein binding profiles. Nanomedicine (Lond) 5:106–117Google Scholar
  13. 13.
    Zheng M, Li ZG, Huang XY (2004) Ethylene glycol monolayer protected nanoparticles: synthesis, characterization, and interactions with biological molecules. Langmuir 20:4226–4235CrossRefGoogle Scholar
  14. 14.
    Sund J, Alenius H, Vippola M, Savolainen K, Puustinen A (2011) Proteomic characterization of engineered nanomaterial–protein interactions in relation to surface reactivity. ACS Nano 5:4300–4309CrossRefGoogle Scholar
  15. 15.
    Deng ZJ, Mortimer G, Schiller T, Musumeci A, Martin D, Minchin RF (2009) Differential plasma protein binding to metal oxide nanoparticles. Nanotechnology 20:455101CrossRefGoogle Scholar
  16. 16.
    Maiorano G, Sabella S, Sorce B, Brunetti V, Malvindi MA, Cingolani R, Pompa PP (2010) Effects of cell culture media on the dynamic formation of protein–nanoparticle complexes and influence on the cellular response. ACS Nano 4:7481–7491CrossRefGoogle Scholar
  17. 17.
    Zhang H, Burnum KE, Luna ML, Petritis BO, Kim JS, Qian WJ, Moore RJ, Heredia-Langner A, Webb-Robertson BJ, Thrall BD, Camp DG 2nd, Smith RD, Pounds JG, Liu T (2011) Quantitative proteomics analysis of adsorbed plasma proteins classifies nanoparticles with different surface properties and size. Proteomics 11:4569–4577CrossRefGoogle Scholar
  18. 18.
    Lundqvist M, Stigler J, Elia G, Lynch I, Cedervall T, Dawson KA (2008) Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. Proc Natl Acad Sci USA 105:14265–14270CrossRefGoogle Scholar
  19. 19.
    Schaefer J, Schulze C, Marxer EE, Schaefer UF, Wohlleben W, Bakowsky U, Lehr CM (2012) Atomic force microscopy and analytical ultracentrifugation for probing nanomaterial protein interactions. ACS Nano 6:4603–4614CrossRefGoogle Scholar
  20. 20.
    Mahmoudi M, Lynch I, Ejtehadi MR, Monopoli MP, Bombelli FB, Laurent S (2011) Protein–nanoparticle interactions: opportunities and challenges. Chem Rev 111:5610–5637CrossRefGoogle Scholar
  21. 21.
    Akesson A, Cardenas M, Elia G, Monopoli MP, Dawson KA (2012) The protein corona of dendrimers: PAMAM binds and activates complement proteins in human plasma in a generation dependent manner. RSC Adv 2:11245–11248Google Scholar
  22. 22.
    Lesniak A, Fenaroli F, Monopoli MP, Aberg C, Dawson KA, Salvati A (2012) Effects of the presence or absence of a protein corona on silica nanoparticle uptake and impact on cells. ACS Nano 6:5845–5857CrossRefGoogle Scholar
  23. 23.
    Ge C, Du J, Zhao L, Wang L, Liu Y, Li D, Yang Y, Zhou R, Zhao Y, Chai Z, Chen C (2011) Binding of blood proteins to carbon nanotubes reduces cytotoxicity. Proc Natl Acad Sci USA 108:16968–16973CrossRefGoogle Scholar
  24. 24.
    Hu W, Peng C, Lv M, Li X, Zhang Y, Chen N, Fan C, Huang Q (2011) Protein corona-mediated mitigation of cytotoxicity of graphene oxide. ACS Nano 5:3693–3700CrossRefGoogle Scholar
  25. 25.
    Deng ZJ, Liang M, Monteiro M, Toth I, Minchin RF (2011) Nanoparticle-induced unfolding of fibrinogen promotes Mac-1 receptor activation and inflammation. Nat Nanotechnol 6:39–44CrossRefGoogle Scholar
  26. 26.
    Monopoli MP, Bombelli FB, Dawson KA (2011) Nanobiotechnology: nanoparticle coronas take shape. Nat Nanotechnol 6:11–12CrossRefGoogle Scholar
  27. 27.
    Pitek AS, O'Connell D, Mahon E, Monopoli MP, Baldelli Bombelli F, Dawson KA (2012) Transferrin coated nanoparticles: study of the bionano interface in human plasma. PLoS One 7:e40685CrossRefGoogle Scholar
  28. 28.
    Casals E, Pfaller T, Duschl A, Oostingh GJ, Puntes V (2010) Time evolution of the nanoparticle protein corona. ACS Nano 4:3623–3632CrossRefGoogle Scholar
  29. 29.
    Shevchenko A, Wilm M, Vorm O, Mann M (1996) Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. Anal Chem 68:850–858CrossRefGoogle Scholar
  30. 30.
    Simpson RJ (2008) Proteins and proteomics: a laboratory manual. Cold Spring Harbor Laboratory. http://www.proteinsandproteomics.org/home_1.html
  31. 31.
    Rai AJ, Gelfand CA, Haywood BC, Warunek DJ, Yi J, Schuchard MD, Mehigh RJ, Cockrill SL, Scott GB, Tammen H, Schulz-Knappe P, Speicher DW, Vitzthum F, Haab BB, Siest G, Chan DW (2005) HUPO Plasma Proteome Project specimen collection and handling: towards the standardization of parameters for plasma proteome samples. Proteomics 5:3262–3277CrossRefGoogle Scholar
  32. 32.
    Casals E, Pfaller T, Duschl A, Oostingh GJ, Puntes VF (2011) Hardening of the nanoparticle–protein corona in metal (Au, Ag) and oxide (Fe3O4, CoO, and CeO2) nanoparticles. Small 7:3479–3486CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Marco P. Monopoli
    • 1
  • Andrzej S. Pitek
    • 1
  • Iseult Lynch
    • 1
  • Kenneth A. Dawson
    • 2
  1. 1.Center for BioNano Interactions, School of Chemistry and Chemical BiologyUniversity College DublinDublinIreland
  2. 2.Centre for BioNano Interactions, School of Chemistry and Chemical BiologyUniversity College DublinDublinIreland

Personalised recommendations