Visualization and Analysis of Biological Networks

  • Pablo Porras Millán
Part of the Methods in Molecular Biology book series (MIMB, volume 1021)


The study of the interactome—the totality of the protein–protein interactions taking place in a cell—has experienced an enormous growth in the last few years. Biological networks representation and analysis has become an everyday tool for many biologists and bioinformatics, as these interaction graphs allow us to map and characterize signaling pathways and predict the function of unknown proteins. However, given the size and complexity of interactome datasets, extracting meaningful information from interaction networks can be a daunting task. Many different tools and approaches can be used to build, represent, and analyze biological networks. In this chapter, we will use a practical example to guide novice users through this process. We will be making use of the popular open source tool Cytoscape and of other resources such as : the PSICQUIC client to access several protein interaction repositories and the BiNGO plugin to perform GO enrichment analysis of the resulting network.

Key words

Interactome Protein–protein interactions Databases Network analysis PPI networks Cytoscape PSICQUIC GO enrichment analysis 


  1. 1.
    Magrane M, U. Consortium (2011) UniProt Knowledgebase: a hub of integrated protein data. Database (Oxford) 2011:bar009CrossRefGoogle Scholar
  2. 2.
    Ashburner M, Ball CA, Blake JA et al (2000) Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 25:25–29PubMedCrossRefGoogle Scholar
  3. 3.
    Orchard S, Kerrien S, Abbani S et al (2012) Protein interaction data curation: the International Molecular Exchange (IMEx) consortium. Nat Methods 9:345–350PubMedCrossRefGoogle Scholar
  4. 4.
    Aranda B, Achuthan P, Alam-Faruque Y et al (2009) The IntAct molecular interaction database in 2010. Nucleic Acids Res 38(Database issue):D525–D531PubMedGoogle Scholar
  5. 5.
    Ceol A, Chatr Aryamontri A, Licata L et al (2010) MINT, the molecular interaction database: 2009 update. Nucleic Acids Res 38:D532–D539PubMedCrossRefGoogle Scholar
  6. 6.
    Salwinski L (2004) The Database of Interacting Proteins: 2004 update. Nucleic Acids Res 32:449D–451DCrossRefGoogle Scholar
  7. 7.
    Chaurasia G, Iqbal Y, Hänig C et al (2007) UniHI: an entry gate to the human protein interactome. Nucleic Acids Res 35:D590–D594PubMedCrossRefGoogle Scholar
  8. 8.
    Goll J, Rajagopala SV, Shiau SC et al (2008) MPIDB: the microbial protein interaction database. Bioinformatics 24:1743–1744PubMedCrossRefGoogle Scholar
  9. 9.
    Aranda B, Blankenburg H, Kerrien S et al (2011) PSICQUIC and PSISCORE: accessing and scoring molecular interactions. Nat Methods 8:528–529PubMedCrossRefGoogle Scholar
  10. 10.
    Smoot ME, Ono K, Ruscheinski J et al (2011) Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics 27:431–432PubMedCrossRefGoogle Scholar
  11. 11.
    Koh G, Porras P, Aranda B et al (2012) Analyzing protein-protein interaction networks. J Proteome Res 11(4):2014–2031PubMedCrossRefGoogle Scholar
  12. 12.
    De Las Rivas J, Fontanillo C (2010) Protein–protein interactions essentials: key concepts to building and analyzing interactome networks. PLoS Comput Biol 6:e1000807PubMedCrossRefGoogle Scholar
  13. 13.
    Ashburner M, Ball CA, Blake JA et al (2000) Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 25:25–29PubMedCrossRefGoogle Scholar
  14. 14.
    Maere S, Heymans K, Kuiper M (2005) BiNGO: a Cytoscape plugin to assess overrepresentation of gene ontology categories in biological networks. Bioinformatics 21:3448–3449PubMedCrossRefGoogle Scholar
  15. 15.
    König S, Probst-Kepper M, Reinl T et al (2012) First insight into the kinome of human regulatory T cells. PLoS One 7:e40896PubMedCrossRefGoogle Scholar
  16. 16.
    Chautard E, Fatoux-Ardore M, Ballut L et al (2011) MatrixDB, the extracellular matrix interaction database. Nucleic Acids Res 39:D235–D240PubMedCrossRefGoogle Scholar
  17. 17.
    Salwinski L, Miller CS, Smith AJ et al (2004) The Database of Interacting Proteins: 2004 update. Nucleic Acids Res 32:D449–D451PubMedCrossRefGoogle Scholar
  18. 18.
    Brown KR, Jurisica I (2005) Online predicted human interaction database. Bioinformatics 21:2076–2082PubMedCrossRefGoogle Scholar
  19. 19.
    Lynn DJ, Chan C, Naseer M et al (2010) Curating the innate immunity interactome. BMC Syst Biol 4:117PubMedCrossRefGoogle Scholar
  20. 20.
    Bindea G, Mlecnik B, Hackl H et al (2009) ClueGO: a Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics 25:1091–1093PubMedCrossRefGoogle Scholar
  21. 21.
    Huang DW, Sherman BT, Lempicki RA (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4:44–57CrossRefGoogle Scholar
  22. 22.
    Smoot M, Ono K, Ideker T et al (2011) PiNGO: a Cytoscape plugin to find candidate genes in biological networks. Bioinformatics 27:1030–1031PubMedCrossRefGoogle Scholar
  23. 23.
    Vidal M, Cusick ME, Barabási A-L (2011) Interactome networks and human disease. Cell 144:986–998PubMedCrossRefGoogle Scholar
  24. 24.
    Ideker T, Krogan NJ (2012) Differential network biology. Mol Syst Biol 8:565PubMedCrossRefGoogle Scholar
  25. 25.
    Braun P, Tasan M, Dreze M et al (2008) An experimentally derived confidence score for binary protein-protein interactions. Nat Methods 6:91–97PubMedCrossRefGoogle Scholar
  26. 26.
    Wang X, Wei X, Thijssen B et al (2012) Three-dimensional reconstruction of protein networks provides insight into human genetic disease. Nat Biotechnol 30:159–164PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2013

Authors and Affiliations

  • Pablo Porras Millán
    • 1
  1. 1.EMBL Outstation–European Bioinformatics InstituteCambridgeUK

Personalised recommendations