Abstract
In this chapter we describe methods for statistical analysis of GWAS data with the goal of quantifying evidence for genomic effects associated with trait variation, while avoiding spurious associations due to evidence not being well quantified or due to population structure.
Single marker analysis and imputation are discussed in Sect. 1, and a Bayesian multi-locus analysis using the BayesQTLBIC R package (1, 2) is described in Sect. 2. The multi-locus analysis, applied in a genomic window, enables local inference of the QTL genetic architecture and is an alternative to imputation. Multi-locus analysis with BayesQTLBIC, including calculation of posterior probabilities for alternative models, posterior probabilities for number of QTL, marginal probabilities for markers, and Bayes factors for individual chromosomes, is demonstrated for simulated QTL data. Methods for correcting the population structure and the possible effects of population structure on power are discussed in Sect. 3. Section 4 considers analysis combining information from linkage and linkage disequilibrium when sampling from a pedigree. Section 5 considers combining information from two different studies—showing that data from an existing QTL mapping family can be profitably used in combination with an association study—prior odds are higher for candidate genes mapping into a QTL region in the QTL mapping family, and, optionally, the number of markers genotyped in an association study can be reduced. Examples using R and the R packages BayesQTLBIC, ncdf are given.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ball, R. D. 2001: Bayesian methods for quantitative trait loci mapping based on model selection: approximate analysis using the Bayesian Information Criterion. Genetics 159: 1351–1364. http://www.genetics.org/cgi/content/abstract/159/3/1351 Accessed 29/5/2012.
Ball, R. D. 2009: BayesQTLBIC—Bayesian multi-locus QTL analysis based on the BIC criterion. http://cran.r-project.org/web/packages/BayesQTLBIC/index.html Accessed 29/5/2012.
Sen, S. and Churchill, G. A. 2001: A statistical framework for quantitative trait mapping. Genetics 159: 371–387.
Marchini, J. Howie, B., Myers, S., McVean, G. and Donnelly, P. 2007: A new multipoint method for genome-wide association studies via imputation of genotypes. Nature Genetics 8: 1750–1761.
Servin B. and Stephens, M. 2007: Imputation-based analysis of association studies: Candidate regions and quantitative traits. PLoS Genet 3(7): 1296–1308. e114. doi: 10.1371/journal.pgen.0030114
Stephens, M. and Balding, D. J. 2009: Bayesian statistical methods for association studies. Nat. Rev. Genet 10: 681–690.
HapMap project 2012: http://hapmap.ncbi.nlm.nih.gov/ Accessed 31/5/2012.
Raftery, A. E. 1995: Bayesian model selection in social research (with Discussion). Sociological Methodology 1995 (Peter V. Marsden, ed.), pp. 111–196, Cambridge, Mass.: Blackwells.
Ball, R. D. 2007b: Quantifying evidence for candidate gene polymorphisms: Bayesian analysis combining sequence-specific and quantitative trait loci colocation information. Genetics 177: 2399–2416. http://www.genetics.org/cgi/content/abstract/177/4/2399 Accessed 29/5/2012.
Sillanpää, M. J. and Bhattacharjee, M. 2005: Bayesian association-based fine mapping in small chromosomal segments. Genetics 169: 427–439.
Astle, W. and Balding, D. 2009: Population structure and cryptic relatedness in genetic association studies. Statistical Science 24: 451–471.
Devlin, B. and Roeder, K. 1999: Genomic control for association studies. Biometrics 55: 997–1004.
Pritchard, J. K., Stephens, M. and Donnelly, P. 2000a: Inference of population structure using multilocus genotype data, Genetics 155: 945–959.
Pritchard, J. K., Stephens, M., Rosenberg, N. A., and Donnelly, P. 2000b: Association mapping in structured populations, Am. J. Hum. Genet. 67: 170–181.
Falush, D., Stephens, M. and Pritchard, J. K. 2003: Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164: 1567–1587.
Setakis, E., Stirnadel, H. and Balding, D. J. 2006: Logistic regression protects against population structure in genetic association studies. Genome Res. 16: 290–296.
Zhang, S. Zhu, X. and Zhao, H. 2003: On a semiparametric test to detect associations between quantitative traits and candidate genes using unrelated individuals. Genet. Epidemiol. 24: 44–56.
Price, A. L., Patterson, N. J., Plenge, R. M., Weinblatt, M. E., Shadick, N. A. and Reich, D. 2006: Principal components analysis corrects for stratification in genome-wide association studies. Nat. Genet. 38: 904–909.
Ritland, K. 1996: Estimators for pairwise relatedness and individual inbreeding coefficients. Genetical Research 67: 175–185.
Zhang, Z., Ersoz, E. Lai, C.-Q., … and Buckler, E.S. 2011: Mixed linear model approach adapted for genome-wide association studies. Nature Genetics 42: 355–360.
Spencer, C. C. A., Su, Z., Donnelly, P., Marchini J. 2009: Designing Genome-Wide Association Studies: Sample Size, Power, Imputation, and the Choice of Genotyping Chip. PLoS Genet 5(5).
Weir, B. S., Anderson, A. D., and Hepler, A. B. 2006: Genetic relatedness analysis: modern data and new challenges. Nature Reviews Genetics 7: 771–780.
Meuwissen, T. H. E., and Goddard, M. E. 2000: Fine mapping of quantitative trait loci using linkage disequilibria with closely linked marker loci. Genetics 155: 421–430.
Meuwissen, T. H. E., and Goddard, M. E. 2001: Prediction of identity-by-descent probabilities from marker haplotypes. Genet. Sel. Evol. 33: 605–634
Meuwissen, T. H. E., Karlsen, A., Lien, S., Oldsaker, I., and Goddard, M. 2002: Fine mapping of a quantitative trait locus for twinning rate using combined linkage and linkage disequilibrium mapping. Genetics 161: 373–379.
Falconer, D. S., and Mackay, T. F. C. 1996: Introduction to Quantitative Genetics. Addison-Wesley Longman, Harlow, England.
Lander, E. S. and Botstein, D. 1989: Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121: 185–199.
Gilmour, A. R., Gogel, B. J., Cullis, B. R., and Thompson, R. 2009: ASReml User Guide Release 3.0 VSN International Ltd, Hemel Hempstead, HP1 1ES, UK. www.vsni.co.uk
Ball, R. D. 2003: lmeSplines—an R package for fitting smoothing spline terms in LME models. R News 3/3 p 24–28. http://cran.r-project.org/web/packages/lmeSplines/index.html. Accessed 29/5/2012.
Ball, R. D. 2007: Statistical analysis and experimental design Chapter 8, In: Association mapping in plants. N. C. Oraguzie et al. editors, Springer Verlag, ISBN 0387358447 (69pp).
Liu, J. S., Sabatti, C., Teng, J., Keats, B. J. B. and Risch, N. 2001: Bayesian analysis of haplotypes for linkage disequilibrium mapping. Genome Research 11: 1716–1724.
Wu, R. and Zeng, Z.-B. 2001: Joint linkage and linkage disequilibrium mapping in natural populations. Genetics 157: 899–909.
Wu, R., Ma, C. X. and Casella, G. 2002: Joint linkage and linkage disequilibrium mapping in natural populations. Genetics 160: 779–792.
Farnir, F., Grisart, B., Coppieters, W., Riquet, J., Berzi, P., et al. 2002: Simultaneous mining of linkage and linkage disequilibrium to fine map quantitative trait loci in outbred half-sib pedigrees: revisiting the location of a quantitative trait locus with major effect on milk production on bovine chromosome 14. Genetics 161: 275–287.
Perez-Enciso, M. 2003: Fine mapping of complex trait genes combining pedigree and linkage disequilibrium information: a Bayesian unified framework. Genetics 163: 1497–1510.
Fan, R. and Jung, J. 2002: Association Studies of QTL for multi-allele Markers by mixed models. Hum. Hered. 54: 132–150.
Lund, M. S., Sorensen, P., Guldbrandtsen, P., and Sorensen, D. A. 2003: Multitrait fine mapping of quantitative trait loci using combined linkage disequilibria and linkage analysis. Genetics 163: 405–410.
Meuwissen, T. H. E., Hayes, B. J., and Goddard, M. E. 2001: Prediction of total genetic value using genome-wide dense marker maps. Genetics 157: 1819–1829.
Meuwissen, T. H. E., and Goddard, M. E. 2004: Mapping multiple QTL using linkage disequilibrium and linkage analysis information and multitrait data. Genet. Sel. Evol. 36: 261–279.
Lee, S. H. and van der Werf, J. H. J. 2005: The role of pedigree information in combined linkage disequilibrium and linkage mapping of quantitative trait loci in a general complex pedigree. Genetics 169: 455–466.
Heath, S. C. 1997: Markov chain Monte Carlo segregation and linkage analysis for oligogenic models. Am. J. Hum. Genet. 61: 748–760.
Heath, S. 2003: Loki 2.4.5—A package for multipoint linkage analysis on large pedigrees using reversible jump Markov chain Monte Carlo. Centre National de Génotypage, Evry Cedex, France. http://www.stat.washington.edu/thompson/Genepi/Loki.shtml Accessed 31/5/2012.
Gao, G. and Hoeschele, I. 2005: Approximating identity-by-descent matrices using multiple haplotype configurations on pedigrees. Genetics 171: 365–376.
Ball, R. D. 2004, 2011 : ldDesign — design of experiments for genome-wide association studies version 2 incorporating quantitative traits and case-control studies. http://cran.r-project.org/web/packages/ldDesign/index.html Accessed 29/5/2012.
Ball, R. D. 2005: Experimental designs for reliable detection of linkage disequilibrium in unstructured random population association studies. Genetics 170: 859–873. http://www.genetics.org/cgi/content/abstract/170/2/859 Accessed 29/5/2012.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer Science+Business Media, LLC
About this protocol
Cite this protocol
Ball, R.D. (2013). Statistical Analysis of Genomic Data. In: Gondro, C., van der Werf, J., Hayes, B. (eds) Genome-Wide Association Studies and Genomic Prediction. Methods in Molecular Biology, vol 1019. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-447-0_7
Download citation
DOI: https://doi.org/10.1007/978-1-62703-447-0_7
Published:
Publisher Name: Humana Press, Totowa, NJ
Print ISBN: 978-1-62703-446-3
Online ISBN: 978-1-62703-447-0
eBook Packages: Springer Protocols