Skip to main content

Genomic Best Linear Unbiased Prediction (gBLUP) for the Estimation of Genomic Breeding Values

  • Protocol
  • First Online:
Genome-Wide Association Studies and Genomic Prediction

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1019))

Abstract

Genomic best linear unbiased prediction (gBLUP) is a method that utilizes genomic relationships to estimate the genetic merit of an individual. For this purpose, a genomic relationship matrix is used, estimated from DNA marker information. The matrix defines the covariance between individuals based on observed similarity at the genomic level, rather than on expected similarity based on pedigree, so that more accurate predictions of merit can be made. gBLUP has been used for the prediction of merit in livestock breeding, may also have some applications to the prediction of disease risk, and is also useful in the estimation of variance components and genomic heritabilities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yang J, Benyamin B, McEvoy BP et al (2010) Common SNPs explain a large proportion of the heritability for human height. Nat Genet 42:565–571

    Article  PubMed  CAS  Google Scholar 

  2. Meuwissen THE, Hayes BJ, Goddard ME (2001) Prediction of total genetic value using genome-wide dense marker maps. Genetics 157:1819–1829

    PubMed  CAS  Google Scholar 

  3. Habier D, Tetens J, Seefried FR et al (2010) The impact of genetic relationship information on genomic breeding values in German Holstein cattle. Genet Sel Evol 42:5

    Article  PubMed  Google Scholar 

  4. Habier D, Fernando RL, Kizilkaya K et al (2010) Extension of the Bayesian alphabet for genomic selection. In: Proceedings of the ninth congress on genetics applied to livestock production, Leipzig, 1–6 Aug 2010

    Google Scholar 

  5. VanRaden PM, Van Tassell CP, Wiggans GR et al (2009) Invited review: reliability of genomic predictions for North American Holstein bulls. J Dairy Sci 92:16–24

    Article  PubMed  CAS  Google Scholar 

  6. Harris BL, Johnson DL, Spelman RJ (2008) Genomic selection in New Zealand and the implications for national genetic evaluation. In: Sattler JD (ed) Proceedings of the 36th ICAR session, Niagara Falls, New York, pp 325–330

    Google Scholar 

  7. Moser G, Tier B, Crump RE et al (2009) A comparison of five methods to predict genomic breeding values of dairy bulls from genome-wide SNP markers. Genet Sel Evol 41:56

    Article  PubMed  Google Scholar 

  8. Habier D, Fernando RL, Dekkers JCM (2007) The impact of genetic relationship information on genome-assisted breeding values. Genetics 177:2389–2397

    PubMed  CAS  Google Scholar 

  9. Clark S, Hickey JM, van der Werf JHJ (2011) Different models of genetic variation and their effect on genomic evaluation. Genet Sel Evol 43:18

    Article  PubMed  Google Scholar 

  10. VanRaden PM (2008) Efficient methods to compute genomic predictions. J Dairy Sci 91:4414–4423

    Article  PubMed  CAS  Google Scholar 

  11. Misztal I, Legarra A, Aguilar I (2009) Computing procedures for genetic evaluation including phenotypic, full pedigree, and genomic information. J Dairy Sci 92:4648–4655

    Article  PubMed  CAS  Google Scholar 

  12. Nejati-Javaremi A, Smith C, Gibson JP (1997) Effect of total allelic relationship on accuracy of evaluation and response to selection. J Anim Sci 75:1738–1745

    PubMed  CAS  Google Scholar 

  13. Villanueva B, Pong-Wong R, Fernandez J et al (2005) Benefits from marker-assisted selection under an additive polygenic genetic model. J Anim Sci 83:1747–1752

    PubMed  CAS  Google Scholar 

  14. Goddard ME, Hayes BJ, Meuwissen TH (2011) Using the genomic relationship matrix to predict the accuracy of genomic selection. J Anim Breed Genet. doi:10.1111/j.1439-0388.2011.00964.x

    PubMed  Google Scholar 

  15. Visscher PM, Medland SE, Ferreira MA et al (2006) Assumption-free estimation of heritability from genome-wide identity-by-descent sharing between full siblings. PLoS Genet 2:e41

    Article  PubMed  Google Scholar 

  16. Hill WG, Weir BS (2011)Variation in actual relationship as a consequence of Mendelian sampling and linkage. Genet Res doi:10.1017/S0016672310000480. http://dx.doi.org/

  17. Hayes BJ, Visscher PM, Goddard ME (2009) Increased accuracy of artificial selection by using the realized relationship matrix. Genet Res 91:47–60

    Article  CAS  Google Scholar 

  18. Clark SA, Hickey JM, Daetwyler H et al (2012) The importance of information on relatives for the prediction of genomic breeding values and the implications for the makeup of reference data sets in livestock breeding schemes. Genet Sel Evol 44:4

    Article  PubMed  Google Scholar 

  19. Gilmour AR, Gogel BJ, Cullis BR et al (2009) ASReml user guide release 30. VSN International, Hemel Hempstead

    Google Scholar 

  20. Forni S, Aguilar I, Misztal I (2011) Different genomic relationship matrices for single-step analysis using phenotypic, pedigree and genomic information. Genet Sel Evol 43:1

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Clark, S.A., van der Werf, J. (2013). Genomic Best Linear Unbiased Prediction (gBLUP) for the Estimation of Genomic Breeding Values. In: Gondro, C., van der Werf, J., Hayes, B. (eds) Genome-Wide Association Studies and Genomic Prediction. Methods in Molecular Biology, vol 1019. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-447-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-447-0_13

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-446-3

  • Online ISBN: 978-1-62703-447-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics