Abstract
The BLR (Bayesian linear regression) package of R implements several Bayesian regression models for continuous traits. The package was originally developed for implementing the Bayesian LASSO (BL) of Park and Casella (J Am Stat Assoc 103(482):681–686, 2008), extended to accommodate fixed effects and regressions on pedigree using methods described by de los Campos et al. (Genetics 182(1):375–385, 2009). In 2010 we further developed the code into an R-package, reprogrammed some internal aspects of the algorithm in the C language to increase computational speed, and further documented the package (Plant Genome J 3(2):106–116, 2010). The first version of BLR was launched in 2010 and since then the package has been used for multiple publications and is being routinely used for genomic evaluations in some animal and plant breeding programs. In this article we review the models implemented by BLR and illustrate the use of the package with examples.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Park T, Casella G (2008) The Bayesian lasso. J Am Stat Assoc 103(482):681–686
de los Campos G, Naya H, Gianola D, Crossa J, Legarra A, Manfredi E, Weigel K, Cotes JM (2009) Predicting quantitative traits with regression models for dense molecular markers and pedigree. Genetics 182(1):375–385
Pérez P, de los Campos G, Crossa J, Gianola D (2010) Genomic-enabled prediction based on molecular markers and pedigree using the Bayesian linear regression package in R. Plant Genome J 3(2):106–116
Meuwissen TH, Hayes BJ, Goddard ME (2001) Prediction of total genetic value using genome-wide dense marker maps. Genetics 157(4):1819–1829
de los Campos G, Hickey JM, Detwyler HD, Pong-Wong R, Calus MPL (2013) Whole genome regression and prediction methods applied to plant and animal breeding. Genetics 193:327–345
R Development Core Team (2010) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria [Internet]. R Foundation for Statistical Computing. http://www.R-project.org
Hoerl AE, Kennard RW (1970) Ridge regression: biased estimation for nonorthogonal problems. Technometrics 12(1):55–67
Vazquez AI, Bates DM, Rosa GJM, Gianola D, Weigel KA (2010) Technical note: an R package for fitting generalized linear mixed models in animal breeding1. J Anim Sci 88(2):497–504
Bates D, Vazquez AI (2009) Pedigreemm: pedigree-based mixed-effects models V 0.2-4 [Internet]. http://cran.r-project.org/web/packages/pedigreemm/index.html
McLaren CG, Bruskiewich RM, Portugal AM, Cosico AB (2005) The international rice information system. A platform for meta-analysis of rice crop data. Plant Physiol 139(2):637–642
Spiegelhalter DJ, Best NG, Carlin BP, van der Linde A (2002) Bayesian measures of model complexity and fit. J R Stat Soc Series B (Stat Methodol) 64(4):583–639
Habier D, Fernando R, Kizilkaya K, Garrick D (2011) Extension of the Bayesian alphabet for genomic selection. BMC Bioinforma 12(1):186
Mrode RA, Thompson R (2005) Linear models for the prediction of animal breeding values [Internet]. Cabi. [cited 15 Aug 2012] http://books.google.com/books?hl=en%26;lr=%26;id=bnewaF4Uq2wC%26;oi=fnd%26;pg=PR5%26;dq=mrode+animal+breeding+genetics%26;ots=05EITYRwMh%26;sig=aDDnpg69HSI4acAmi38yTAVMjqg
Geman S, Geman D (1984) Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Trans Pattern Anal Mach Intell 6:721–741
Casella G, George EI (1992) Explaining the Gibbs sampler. Am Stat 46:167–174
Acknowledgments
de los Campos, Pérez, and Crossa acknowledge financial support from the International Maize and Wheat Improvement Center (CIMMYT). Pérez and de los Campos were also supported by NIH Grants R01GM101219-01 and R01GM099992-01A1.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer Science+Business Media, LLC
About this protocol
Cite this protocol
de los Campos, G., Pérez, P., Vazquez, A.I., Crossa, J. (2013). Genome-Enabled Prediction Using the BLR (Bayesian Linear Regression) R-Package. In: Gondro, C., van der Werf, J., Hayes, B. (eds) Genome-Wide Association Studies and Genomic Prediction. Methods in Molecular Biology, vol 1019. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-447-0_12
Download citation
DOI: https://doi.org/10.1007/978-1-62703-447-0_12
Published:
Publisher Name: Humana Press, Totowa, NJ
Print ISBN: 978-1-62703-446-3
Online ISBN: 978-1-62703-447-0
eBook Packages: Springer Protocols