Skip to main content

Computational Identification of Candidate Nucleotide Cyclases in Higher Plants

  • Protocol
  • First Online:
Cyclic Nucleotide Signaling in Plants

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1016))

Abstract

In higher plants guanylyl cyclases (GCs) and adenylyl cyclases (ACs) cannot be identified using BLAST homology searches based on annotated cyclic nucleotide cyclases (CNCs) of prokaryotes, lower eukaryotes, or animals. The reason is that CNCs are often part of complex multifunctional proteins with different domain organizations and biological functions that are not conserved in higher plants. For this reason, we have developed CNC search strategies based on functionally conserved amino acids in the catalytic center of annotated and/or experimentally confirmed CNCs. Here we detail this method which has led to the identification of >25 novel candidate CNCs in Arabidopsis thaliana, several of which have been experimentally confirmed in vitro and in vivo. We foresee that the application of this method can be used to identify many more members of the growing family of CNCs in higher plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Neuhaus G, Bowler C, Hiratsuka K, Yamagata H, Chua NH (1997) Phytochrome-regulated repression of gene expression requires calcium and cGMP. EMBO J 16:2554–2564

    Article  PubMed  CAS  Google Scholar 

  2. Pharmawati M, Billington T, Gehring CA (1998) Stomatal guard cell responses to ­kinetin and natriuretic peptides are cGMP dependent. Cell Mol Life Sci 54:272–276

    Article  PubMed  CAS  Google Scholar 

  3. Gehring CA, Irving HR (2003) Natriuretic peptides—a class of heterologous molecules in plants. Int J Biochem Cell Biol 35:1318–1322

    Article  PubMed  CAS  Google Scholar 

  4. Kwezi L, Ruzvidzo O, Wheeler JI, Govender K, Iacuone S, Thompson PE, Gehring C, Irving HR (2011) The phytosulfokine (PSK) receptor is capable of guanylate cyclase activity and enabling cyclic GMP-dependent signaling in plants. J Biol Chem 286:22580–22588

    Article  PubMed  CAS  Google Scholar 

  5. Maathuis FJ, Sanders D (2001) Sodium uptake in Arabidopsis roots is regulated by cyclic nucleotides. Plant Physiol 127:1617–1625

    Article  PubMed  CAS  Google Scholar 

  6. Donaldson L, Ludidi N, Knight MR, Gehring C, Denby K (2004) Salt and osmotic stress cause rapid increases in Arabidopsis thaliana cGMP levels. FEBS Lett 569:317–320

    Article  PubMed  CAS  Google Scholar 

  7. Pasqualini S, Meier S, Gehring C, Madeo L, Fornaciari M, Romano B, Ederli L (2009) Ozone and nitric oxide induce cGMP-dependent and -independent transcription of defence genes in tobacco. New Phytol 181:860–870

    Article  PubMed  CAS  Google Scholar 

  8. Qi Z, Verma R, Gehring C, Yamaguchi Y, Zhao Y, Ryan CA, Berkowitz GA (2010) Ca2+ signaling by plant Arabidopsis thaliana Pep peptides depends on AtPepR1, a receptor with guanylyl cyclase activity, and cGMP-activated Ca2+ channels. Proc Natl Acad Sci USA 107:21193–21198

    Article  PubMed  CAS  Google Scholar 

  9. Leng Q, Mercier RW, Yao W, Berkowitz GA (1999) Cloning and first functional characterization of a plant cyclic nucleotide-gated ­cation channel. Plant Physiol 121:753–761

    Article  PubMed  CAS  Google Scholar 

  10. Ludidi N, Gehring C (2003) Identification of a novel protein with guanylyl cyclase activity in Arabidopsis thaliana. J Biol Chem 278:6490–6494

    Article  PubMed  CAS  Google Scholar 

  11. Meier S, Seoighe C, Kwezi L, Irving H, Gehring C (2007) Plant nucleotide cyclases: an increasingly complex and growing family. Plant Signal Behav 2:536–539

    Article  PubMed  Google Scholar 

  12. Kwezi L, Meier S, Mungur L, Ruzvidzo O, Irving H, Gehring C (2007) The Arabidopsis thaliana brassinosteroid receptor (AtBRI1) contains a domain that functions as a guanylyl cyclase in vitro. PloS One 2:e449

    Article  PubMed  Google Scholar 

  13. Gehring C (2010) Adenyl cyclases and cAMP in plant signaling—past and present. Cell Commun Signal 8:15

    Article  PubMed  Google Scholar 

  14. Liu Y, Ruoho A, Rao V, Hurley J (1997) Catalytic mechanisms of the adenyl and guanylyl cyclases: modelling and mutational analysis. Proc Natl Acad Sci USA 94:13414–13419

    Article  PubMed  CAS  Google Scholar 

  15. Mulaudzi T, Ludidi N, Ruzvidzo O, Morse M, Hendricks N, Iwuoha E, Gehring C (2011) Identification of a novel Arabidopsis thaliana nitric oxide-binding molecule with guanylate cyclase activity in vitro. FEBS Lett 585:2693–2697

    Article  PubMed  CAS  Google Scholar 

  16. Krieger E, Nabuurs SB, Vriend G (2005) Homology modeling. Structural ­bioinformatics. Wiley, New York, pp 509–523

    Book  Google Scholar 

  17. Eswar N, Webb B, Marti-Renom MA, Madhusudhan MS, Eramian D, Shen MY, Pieper U, Sali A (2001) Comparative protein structure modeling using MODELLER. Current protocols in protein science. Wiley, New York, Chapter 2, Unit 2.9.

    Google Scholar 

  18. McCue L, McDonough K, Lawrence C (2000) Functional classification of cNMP-binding proteins and nucleotide cyclases with implications for novel regulatory pathways in Mycobacterium tuberculosis. Genome Res 10:204–219

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this protocol

Cite this protocol

Wong, A., Gehring, C. (2013). Computational Identification of Candidate Nucleotide Cyclases in Higher Plants. In: Gehring, C. (eds) Cyclic Nucleotide Signaling in Plants. Methods in Molecular Biology, vol 1016. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-441-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-441-8_13

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-440-1

  • Online ISBN: 978-1-62703-441-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics