Skip to main content

Computational Identification of Candidate Nucleotide Cyclases in Higher Plants

Part of the Methods in Molecular Biology book series (MIMB,volume 1016)

Abstract

In higher plants guanylyl cyclases (GCs) and adenylyl cyclases (ACs) cannot be identified using BLAST homology searches based on annotated cyclic nucleotide cyclases (CNCs) of prokaryotes, lower eukaryotes, or animals. The reason is that CNCs are often part of complex multifunctional proteins with different domain organizations and biological functions that are not conserved in higher plants. For this reason, we have developed CNC search strategies based on functionally conserved amino acids in the catalytic center of annotated and/or experimentally confirmed CNCs. Here we detail this method which has led to the identification of >25 novel candidate CNCs in Arabidopsis thaliana, several of which have been experimentally confirmed in vitro and in vivo. We foresee that the application of this method can be used to identify many more members of the growing family of CNCs in higher plants.

Key words

  • Cyclic nucleotide cyclase
  • Adenylyl cyclase
  • cAMP
  • Guanylyl cyclase
  • cGMP
  • Catalytic center
  • Motif search
  • Homology modeling
  • Basic local alignment search tool
  • Arabidopsis thaliana

This is a preview of subscription content, access via your institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-62703-441-8_13
  • Chapter length: 11 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-1-62703-441-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   149.00
Price excludes VAT (USA)
Hardcover Book
USD   149.99
Price excludes VAT (USA)
Fig. 1
Fig. 2

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Neuhaus G, Bowler C, Hiratsuka K, Yamagata H, Chua NH (1997) Phytochrome-regulated repression of gene expression requires calcium and cGMP. EMBO J 16:2554–2564

    PubMed  CrossRef  CAS  Google Scholar 

  2. Pharmawati M, Billington T, Gehring CA (1998) Stomatal guard cell responses to ­kinetin and natriuretic peptides are cGMP dependent. Cell Mol Life Sci 54:272–276

    PubMed  CrossRef  CAS  Google Scholar 

  3. Gehring CA, Irving HR (2003) Natriuretic peptides—a class of heterologous molecules in plants. Int J Biochem Cell Biol 35:1318–1322

    PubMed  CrossRef  CAS  Google Scholar 

  4. Kwezi L, Ruzvidzo O, Wheeler JI, Govender K, Iacuone S, Thompson PE, Gehring C, Irving HR (2011) The phytosulfokine (PSK) receptor is capable of guanylate cyclase activity and enabling cyclic GMP-dependent signaling in plants. J Biol Chem 286:22580–22588

    PubMed  CrossRef  CAS  Google Scholar 

  5. Maathuis FJ, Sanders D (2001) Sodium uptake in Arabidopsis roots is regulated by cyclic nucleotides. Plant Physiol 127:1617–1625

    PubMed  CrossRef  CAS  Google Scholar 

  6. Donaldson L, Ludidi N, Knight MR, Gehring C, Denby K (2004) Salt and osmotic stress cause rapid increases in Arabidopsis thaliana cGMP levels. FEBS Lett 569:317–320

    PubMed  CrossRef  CAS  Google Scholar 

  7. Pasqualini S, Meier S, Gehring C, Madeo L, Fornaciari M, Romano B, Ederli L (2009) Ozone and nitric oxide induce cGMP-dependent and -independent transcription of defence genes in tobacco. New Phytol 181:860–870

    PubMed  CrossRef  CAS  Google Scholar 

  8. Qi Z, Verma R, Gehring C, Yamaguchi Y, Zhao Y, Ryan CA, Berkowitz GA (2010) Ca2+ signaling by plant Arabidopsis thaliana Pep peptides depends on AtPepR1, a receptor with guanylyl cyclase activity, and cGMP-activated Ca2+ channels. Proc Natl Acad Sci USA 107:21193–21198

    PubMed  CrossRef  CAS  Google Scholar 

  9. Leng Q, Mercier RW, Yao W, Berkowitz GA (1999) Cloning and first functional characterization of a plant cyclic nucleotide-gated ­cation channel. Plant Physiol 121:753–761

    PubMed  CrossRef  CAS  Google Scholar 

  10. Ludidi N, Gehring C (2003) Identification of a novel protein with guanylyl cyclase activity in Arabidopsis thaliana. J Biol Chem 278:6490–6494

    PubMed  CrossRef  CAS  Google Scholar 

  11. Meier S, Seoighe C, Kwezi L, Irving H, Gehring C (2007) Plant nucleotide cyclases: an increasingly complex and growing family. Plant Signal Behav 2:536–539

    PubMed  CrossRef  Google Scholar 

  12. Kwezi L, Meier S, Mungur L, Ruzvidzo O, Irving H, Gehring C (2007) The Arabidopsis thaliana brassinosteroid receptor (AtBRI1) contains a domain that functions as a guanylyl cyclase in vitro. PloS One 2:e449

    PubMed  CrossRef  Google Scholar 

  13. Gehring C (2010) Adenyl cyclases and cAMP in plant signaling—past and present. Cell Commun Signal 8:15

    PubMed  CrossRef  Google Scholar 

  14. Liu Y, Ruoho A, Rao V, Hurley J (1997) Catalytic mechanisms of the adenyl and guanylyl cyclases: modelling and mutational analysis. Proc Natl Acad Sci USA 94:13414–13419

    PubMed  CrossRef  CAS  Google Scholar 

  15. Mulaudzi T, Ludidi N, Ruzvidzo O, Morse M, Hendricks N, Iwuoha E, Gehring C (2011) Identification of a novel Arabidopsis thaliana nitric oxide-binding molecule with guanylate cyclase activity in vitro. FEBS Lett 585:2693–2697

    PubMed  CrossRef  CAS  Google Scholar 

  16. Krieger E, Nabuurs SB, Vriend G (2005) Homology modeling. Structural ­bioinformatics. Wiley, New York, pp 509–523

    CrossRef  Google Scholar 

  17. Eswar N, Webb B, Marti-Renom MA, Madhusudhan MS, Eramian D, Shen MY, Pieper U, Sali A (2001) Comparative protein structure modeling using MODELLER. Current protocols in protein science. Wiley, New York, Chapter 2, Unit 2.9.

    Google Scholar 

  18. McCue L, McDonough K, Lawrence C (2000) Functional classification of cNMP-binding proteins and nucleotide cyclases with implications for novel regulatory pathways in Mycobacterium tuberculosis. Genome Res 10:204–219

    PubMed  CrossRef  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this protocol

Cite this protocol

Wong, A., Gehring, C. (2013). Computational Identification of Candidate Nucleotide Cyclases in Higher Plants. In: Gehring, C. (eds) Cyclic Nucleotide Signaling in Plants. Methods in Molecular Biology, vol 1016. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-441-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-441-8_13

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-440-1

  • Online ISBN: 978-1-62703-441-8

  • eBook Packages: Springer Protocols