Skip to main content

The Culture of Limbal Epithelial Cells

  • Protocol
  • First Online:
Corneal Regenerative Medicine

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1014))

Abstract

The transplantation of cultured limbal epithelial cells (LEC) has since its first application in 1997 emerged as a promising technique for treating limbal stem cell deficiency. The culture methods hitherto used vary with respect to preparation of the harvested tissue, choice of culture medium, culture time, culture substrates, and supplementary techniques. In this chapter, we describe a procedure for establishing human LEC cultures using a feeder-free explant culture technique with human amniotic membrane (AM) as the culture substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dua HS, Azuara-Blanco A (2000) Limbal stem cells of the corneal epithelium. Surv Ophthalmol 44:415–425

    PubMed  CAS  Google Scholar 

  2. Pellegrini G, Traverso CE, Franzi AT, Zingirian M, Cancedda R, De Luca M (1997) Long-term restoration of damaged corneal surfaces with autologous cultivated corneal epithelium. Lancet 349:990–993

    PubMed  CAS  Google Scholar 

  3. Schwab IR (1999) Cultured corneal epithelia for ocular surface disease. Trans Am Ophthalmol Soc 97:891–986

    PubMed  CAS  Google Scholar 

  4. Koizumi N, Inatomi T, Suzuki T, Sotozono C, Kinoshita S (2001) Cultivated corneal epithelial stem cell transplantation in ocular surface disorders. Ophthalmology 108:1569–1574

    PubMed  CAS  Google Scholar 

  5. Jenkins C, Tuft S, Liu C, Buckley R (1993) Limbal transplantation in the management of chronic contact-lens-associated epitheliopathy. Eye 7:629–633

    PubMed  Google Scholar 

  6. Basu S, Ali H, Sangwan VS (2012) Clinical outcomes of repeat autologous cultivated limbal epithelial transplantation for ocular surface burns. Am J Ophthalmol 153:643–650, e2

    PubMed  Google Scholar 

  7. Kinoshita S, Koizumi N, Sotozono C, Yamada J, Nakamura T, Inatomi T (2004) Concept and clinical application of cultivated epithelial transplantation for ocular surface disorders. Ocul Surf 2:21–33

    PubMed  Google Scholar 

  8. Lim P, Fuchsluger TA, Jurkunas UV (2009) Limbal stem cell deficiency and corneal neovascularization. Semin Ophthalmol 24:139–148

    PubMed  Google Scholar 

  9. Sharpe JR, Daya SM, Dimitriadi M, Martin R, James SE (2007) Survival of cultured allogeneic limbal epithelial cells following corneal repair. Tissue Eng 13:123–132

    PubMed  Google Scholar 

  10. Pauklin M, Steuhl KP, Meller D (2009) Characterization of the corneal surface in limbal stem cell deficiency and after transplantation of cultivated limbal epithelium. Ophthalmology 116:1048–1056

    PubMed  Google Scholar 

  11. Pauklin M, Kakkassery V, Steuhl KP, Meller D (2009) Expression of membrane-associated mucins in limbal stem cell deficiency and after transplantation of cultivated limbal epithelium. Curr Eye Res 34:221–230

    PubMed  CAS  Google Scholar 

  12. Sahu SK, Das S, Sachdeva V, Sangwan VS (2009) Alcaligenes xylosoxidans keratitis after autologous cultivated limbal epithelium ­transplant. Can J Ophthalmol 44:336–337

    PubMed  Google Scholar 

  13. Marchini G, Pedrotti E, Pedrotti M, Barbaro V, Di Iorio E, Ferrari S et al (2011) Long-term effectiveness of autologous cultured limbal stem cell grafts in patients with limbal stem cell deficiency due to chemical burns. Clin Experiment Ophthalmol 40:255–267

    PubMed  Google Scholar 

  14. Basu S, Mohamed A, Chaurasia S, Sejpal K, Vemuganti GK, Sangwan VS (2011) Clinical outcomes of penetrating keratoplasty after autologous cultivated limbal epithelial transplantation for ocular surface burns. Am J Ophthalmol 152:917–924, e1

    PubMed  Google Scholar 

  15. Nakamura T, Sotozono C, Bentley AJ, Mano S, Inatomi T, Koizumi N et al (2010) Long-term phenotypic study after allogeneic cultivated corneal limbal epithelial transplantation for severe ocular surface diseases. Ophthalmology 117:2247–2254, e1

    PubMed  Google Scholar 

  16. Tseng SC, Meller D, Anderson DF, Touhami A, Pires RT, Gruterich M et al (2002) Ex vivo preservation and expansion of human limbal epithelial stem cells on amniotic membrane for treating corneal diseases with total limbal stem cell deficiency. Adv Exp Med Biol 506(Pt B):1323–1334

    PubMed  Google Scholar 

  17. Gomes JA, Pazos HS, Silva AB, Cristovam PC, Belfort Junior R (2009) Transplante de celulas-tronco epiteliais limbicas alogenas expandidas ex vivo sobre membrana amniotica: relato de caso. Arq Bras Oftalmol 72:254–256

    PubMed  Google Scholar 

  18. Harkin DG, Barnard Z, Gillies P, Ainscough SL, Apel AJ (2004) Analysis of p63 and cytokeratin expression in a cultivated limbal autograft used in the treatment of limbal stem cell deficiency. Br J Ophthalmol 88:1154–1158

    PubMed  CAS  Google Scholar 

  19. Shigeyasu C, Shimazaki J (2011) Ocular surface reconstruction after exposure to high concentrations of antiseptic solutions. Cornea 31:59–65

    Google Scholar 

  20. Sangwan VS, Basu S, Vemuganti GK, Sejpal K, Subramaniam SV, Bandyopadhyay S et al (2011) Clinical outcomes of xeno-free autologous cultivated limbal epithelial transplantation: a 10-year study. Br J Ophthalmol 95:1525–1529

    PubMed  Google Scholar 

  21. Sharma S, Tandon R, Mohanty S, Sharma NMV, Sen S, Kashyap S et al (2011) Culture of corneal limbal epithelial stem cells: experience from benchtop to bedside in a tertiary care hospital in India. Cornea 30:1223–1232

    PubMed  Google Scholar 

  22. Thanos M, Pauklin M, Steuhl KP, Meller D (2010) Ocular surface reconstruction with cultivated limbal epithelium in a patient with unilateral stem cell deficiency caused by Epidermolysis Bullosa Dystrophica Hallopeau-Siemens. Cornea 29:462–464

    PubMed  Google Scholar 

  23. Meller D, Pauklin M, Westekemper H, Steuhl KP (2010) Autologe Transplantation von kultiviertem Limbusepithel. Ophthalmologe 107:1133–1138

    PubMed  CAS  Google Scholar 

  24. Desousa JL, Daya S, Malhotra R (2009) Adnexal surgery in patients undergoing ocular surface stem cell transplantation. Ophthalmology 116:235–242

    PubMed  Google Scholar 

  25. Meller D, Fuchsluger T, Pauklin M, Steuhl KP (2009) Ocular surface reconstruction in graft-versus-host disease with HLA-identical living-related allogeneic cultivated limbal epithelium after hematopoietic stem cell transplantation from the same donor. Cornea 28:233–236

    PubMed  Google Scholar 

  26. Sangwan VS, Vemuganti GK, Singh S, Balasubramanian D (2003) Successful reconstruction of damaged ocular outer surface in humans using limbal and conjuctival stem cell culture methods. Biosci Rep 23:169–174

    PubMed  CAS  Google Scholar 

  27. Ang LP, Sotozono C, Koizumi N, Suzuki T, Inatomi T, Kinoshita S (2007) A comparison between cultivated and conventional limbal stem cell transplantation for Stevens-Johnson syndrome. Am J Ophthalmol 143:178–180

    PubMed  Google Scholar 

  28. Baradaran-Rafii A, Ebrahimi M, Kanavi MR, Taghi-Abadi E, Aghdami N, Eslani M et al (2010) Midterm outcomes of autologous cultivated limbal stem cell transplantation with or without penetrating keratoplasty. Cornea 29:502–509

    PubMed  Google Scholar 

  29. Daya SM, Watson A, Sharpe JR, Giledi O, Rowe A, Martin R et al (2005) Outcomes and DNA analysis of ex vivo expanded stem cell allograft for ocular surface reconstruction. Ophthalmology 112:470–477

    PubMed  Google Scholar 

  30. Di Girolamo N, Bosch M, Zamora K, Coroneo MT, Wakefield D, Watson SL (2009) A contact lens-based technique for expansion and transplantation of autologous epithelial progenitors for ocular surface reconstruction. Transplantation 87:1571–1578

    PubMed  Google Scholar 

  31. Di Iorio E, Ferrari S, Fasolo A, Bohm E, Ponzin D, Barbaro V (2010) Techniques for culture and assessment of limbal stem cell grafts. Ocul Surf 8:146–153

    PubMed  Google Scholar 

  32. Fatima A, Vemuganti GK, Iftekhar G, Rao GN, Sangwan VS (2007) In vivo survival and stratification of cultured limbal epithelium. Clin Experiment Ophthalmol 35:96–98

    PubMed  Google Scholar 

  33. Grueterich M (2002) Phenotypic study of a case with successful transplantation of ex vivo expanded human limbal epithelium for unilateral total limbal stem cell deficiency. Ophthalmology 109:1547–1552

    PubMed  Google Scholar 

  34. Kawashima M, Kawakita T, Satake Y, Higa K, Shimazaki J (2007) Phenotypic study after cultivated limbal epithelial transplantation for limbal stem cell deficiency. Arch Ophthalmol 125:1337–1344

    PubMed  Google Scholar 

  35. Koizumi N, Inatomi T, Suzuki T, Sotozono C, Kinoshita S (2001) Cultivated corneal epithelial transplantation for ocular surface reconstruction in acute phase of Stevens-Johnson syndrome. Arch Ophthalmol 119:298–300

    PubMed  CAS  Google Scholar 

  36. Nakamura T, Koizumi N, Tsuzuki M, Inoki K, Sano Y, Sotozono C et al (2003) Successful regrafting of cultivated corneal epithelium using amniotic membrane as a carrier in severe ocular surface disease. Cornea 22:70–71

    PubMed  Google Scholar 

  37. Nakamura T, Inatomi T, Sotozono C, Koizumi N, Kinoshita S (2004) Successful primary culture and autologous transplantation of corneal limbal epithelial cells from minimal biopsy for unilateral severe ocular surface disease. Acta Ophthalmol Scand 82:468–471

    PubMed  Google Scholar 

  38. Nakamura T, Inatomi T, Sotozono C, Ang LP, Koizumi N, Yokoi N et al (2006) Transplantation of autologous serum-derived cultivated corneal epithelial equivalents for the treatment of severe ocular surface disease. Ophthalmology 113:1765–1772

    PubMed  Google Scholar 

  39. Pauklin M, Fuchsluger TA, Westekemper H, Steuhl KP, Meller D (2010) Midterm results of cultivated autologous and allogeneic limbal epithelial transplantation in limbal stem cell deficiency. Dev Ophthalmol 45:57–70

    PubMed  Google Scholar 

  40. Rama P, Bonini S, Lambiase A, Golisano O, Paterna P, De Luca M et al (2001) Autologous fibrin-cultured limbal stem cells permanently restore the corneal surface of patients with total limbal stem cell deficiency. Transplantation 72:1478–1485

    PubMed  CAS  Google Scholar 

  41. Sangwan VS, Vemuganti GK, Iftekhar G, Bansal AK, Rao GN (2003) Use of autologous cultured limbal and conjunctival epithelium in a patient with severe bilateral ocular surface disease induced by acid injury: a case report of unique application. Cornea 22:478–481

    PubMed  Google Scholar 

  42. Sangwan VS, Matalia HP, Vemuganti GK, Fatima A, Iftekhar G, Singh S et al (2006) Clinical outcome of autologous cultivated limbal epithelium transplantation. Indian J Ophthalmol 54:29–34

    PubMed  Google Scholar 

  43. Schwab IR, Reyes M, Isseroff RR (2000) Successful transplantation of bioengineered tissue replacements in patients with ocular surface disease. Cornea 19:421–426

    PubMed  CAS  Google Scholar 

  44. Shimazaki J, Higa K, Morito F, Dogru M, Kawakita T, Satake Y et al (2007) Factors influencing outcomes in cultivated limbal epithelial transplantation for chronic cicatricial ocular surface disorders. Am J Ophthalmol 143:945–953

    PubMed  Google Scholar 

  45. Tsai RJ, Li LM, Chen JK (2000) Reconstruction of damaged corneas by transplantation of autologous limbal epithelial cells. N Engl J Med 343:86–93

    PubMed  CAS  Google Scholar 

  46. Colabelli Gisoldi RA, Pocobelli A, Villani CM, Amato D, Pellegrini G (2010) Evaluation of molecular markers in corneal regeneration by means of autologous cultures of limbal cells and keratoplasty. Cornea 29:715–722

    PubMed  Google Scholar 

  47. Kolli S, Ahmad S, Lako M, Figueiredo F (2010) Successful clinical implementation of corneal epithelial stem cell therapy for treatment of unilateral limbal stem cell deficiency. Stem Cells 28:597–610

    PubMed  CAS  Google Scholar 

  48. Rama P, Matuska S, Paganoni G, Spinelli A, De Luca M, Pellegrini G (2010) Limbal stem-cell therapy and long-term corneal regeneration. N Engl J Med 363:147–155

    PubMed  CAS  Google Scholar 

  49. Shortt AJ, Secker GA, Rajan MS, Meligonis G, Dart JK, Tuft SJ et al (2008) Ex vivo expansion and transplantation of limbal epithelial stem cells. Ophthalmology 115:1989–1997

    PubMed  Google Scholar 

  50. Pan Z, Zhang W, Wu Y, Sun B (2002) Transplantation of corneal stem cells cultured on amniotic membrane for corneal burn: experimental and clinical study. Chin Med J (Engl) 115:767–769

    Google Scholar 

  51. Shimazaki J, Aiba M, Goto E, Kato N, Shimmura S, Tsubota K (2002) Transplantation of human limbal epithelium cultivated on amniotic membrane for the treatment of severe ocular surface disorders. Ophthalmology 109:1285–1290

    PubMed  Google Scholar 

  52. Sangwan VS, Matalia HP, Vemuganti GK, Iftekhar G, Fatima A, Singh S et al (2005) Early results of penetrating keratoplasty after cultivated limbal epithelium transplantation. Arch Ophthalmol 123:334–340

    PubMed  Google Scholar 

  53. Sangwan VS, Murphy SI, Vemuganti GK, Bansal AK, Gangopadhyay N, Rao GN (2005) Cultivated corneal epithelial transplantation for severe ocular surface disease in vernal keratoconjunctivitis. Cornea 24:426–430

    PubMed  Google Scholar 

  54. Dobrowolski D, Wylegala E, Orzechowska-Wylegala B, Wowra B, Wroblewska-Czajka E (2011) Application of autologous cultivated corneal epithelium for corneal limbal stem cell insufficiency—short-term results. Klin Oczna 113:346–351

    PubMed  Google Scholar 

  55. Fatima A, Matalia HP, Vemuganti GK, Honavar SG, Sangwan VS (2006) Pseudoepitheliomatous hyperplasia mimicking ocular surface squamous neoplasia following cultivated limbal epithelium transplantation. Clin Experiment Ophthalmol 34:889–891

    PubMed  Google Scholar 

  56. Tsai RJ, Li L, Chen J (2000) Reconstruction of damaged corneas by transplantation of autologous limbal epithelial cells(1). Am J Ophthalmol 130:543

    PubMed  Google Scholar 

  57. Shortt AJ, Secker GA, Notara MD, Limb GA, Khaw PT, Tuft SJ et al (2007) Transplantation of ex vivo cultured limbal epithelial stem cells: a review of techniques and clinical results. Surv Ophthalmol 52:483–502

    PubMed  Google Scholar 

  58. Satake Y, Shimmura S, Shimazaki J (2009) Cultivated autologous limbal epithelial transplantation for symptomatic bullous keratopathy. BMJ Case Rep. pii: bcr.11.2008.1239

    Google Scholar 

  59. Mariappan I, Maddileti S, Savy S, Tiwari S, Gaddipati S, Fatima A et al (2010) In vitro culture and expansion of human limbal epithelial cells. Nat Protoc 5:1470–1479

    PubMed  CAS  Google Scholar 

  60. Madhavan HN, Priya K, Malathi J, Joseph PR (2002) Preparation of amniotic membrane for ocular surface reconstruction. Indian J Ophthalmol 50:227–231

    PubMed  Google Scholar 

  61. Dua HS, Maharajan VS, Hopkinson A (2006) Controversies and limitations of amniotic membrane in ophthalmic surgery. In: Reinhard T, Larkin F (eds) Cornea and external eye disease (Essentials in ophthalmology). Springer, Berlin, Heidelberg, pp 21–33

    Google Scholar 

  62. Adds PJ, Hunt CJ, Dart JK (2001) Amniotic membrane grafts, “fresh” or frozen? A clinical and in vitro comparison. Br J Ophthalmol 85:905–907

    PubMed  CAS  Google Scholar 

  63. Lee SH, Tseng SC (1997) Amniotic membrane transplantation for persistent epithelial defects with ulceration. Am J Ophthalmol 123:303–312

    PubMed  CAS  Google Scholar 

  64. van Baare J, Ligtvoet EE, Middelkoop E (1998) Microbiological evaluation of glycerolized cadaveric donor skin. Transplantation 65:966–970

    PubMed  Google Scholar 

  65. Shortt AJ, Secker GA, Lomas RJ, Wilshaw SP, Kearney JN, Tuft SJ et al (2009) The effect of amniotic membrane preparation method on its ability to serve as a substrate for the ex-vivo expansion of limbal epithelial cells. Biomaterials 30:1056–1065

    PubMed  CAS  Google Scholar 

  66. Grueterich M, Espana EM, Tseng SC (2003) Modulation of keratin and connexin expression in limbal epithelium expanded on denuded amniotic membrane with and without a 3T3 fibroblast feeder layer. Invest Ophthalmol Vis Sci 44:4230–4236

    PubMed  Google Scholar 

  67. Grueterich M, Espana E, Tseng SC (2002) Connexin 43 expression and proliferation of human limbal epithelium on intact and denuded amniotic membrane. Invest Ophthalmol Vis Sci 43:63–71

    PubMed  Google Scholar 

  68. Sudha B, Sitalakshmi G, Iyer GK, Krishnakumar S (2008) Putative stem cell markers in limbal epithelial cells cultured on intact & denuded human amniotic membrane. Indian J Med Res 128:149–156

    PubMed  CAS  Google Scholar 

  69. Koizumi N, Rigby H, Fullwood NJ, Kawasaki S, Tanioka H, Koizumi K et al (2007) Comparison of intact and denuded amniotic membrane as a substrate for cell-suspension culture of human limbal epithelial cells. Graefes Arch Clin Exp Ophthalmol 245:123–134

    PubMed  Google Scholar 

  70. Kubo M, Sonoda Y, Muramatsu R, Usui M (2001) Immunogenicity of human amniotic membrane in experimental xenotransplantation. Invest Ophthalmol Vis Sci 42:1539–1546

    PubMed  CAS  Google Scholar 

  71. Dekaris I, Gabric N (2009) Preparation and preservation of amniotic membrane. Dev Ophthalmol 43:97–104

    PubMed  Google Scholar 

  72. Thomasen H, Pauklin M, Noelle B, Geerling G, Vetter J, Steven P et al (2011) The effect of long-term storage on the biological and histological properties of cryopreserved amniotic membrane. Curr Eye Res 36:247–255

    PubMed  CAS  Google Scholar 

  73. Meller D, Pires RT, Tseng SC (2002) Ex vivo preservation and expansion of human limbal epithelial stem cells on amniotic membrane cultures. Br J Ophthalmol 86:463–471

    PubMed  CAS  Google Scholar 

  74. Tseng SC, Li DQ, Ma X (1999) Suppression of transforming growth factor-beta isoforms, TGF-beta receptor type II, and myofibroblast differentiation in cultured human corneal and limbal fibroblasts by amniotic membrane matrix. J Cell Physiol 179:325–335

    PubMed  CAS  Google Scholar 

  75. Grueterich M, Tseng SC (2002) Human limbal progenitor cells expanded on intact amniotic membrane ex vivo. Arch Ophthalmol 120:783–790

    PubMed  Google Scholar 

  76. Hernandez Galindo EE, Galindo EE, Theiss C, Steuhl KP, Meller D (2003) Gap junctional communication in microinjected human limbal and peripheral corneal epithelial cells cultured on intact amniotic membrane. Exp Eye Res 76:303–314

    PubMed  CAS  Google Scholar 

  77. Hernandez Galindo EE, Theiss C, Steuhl KP, Meller D (2003) Expression of Delta Np63 in response to phorbol ester in human limbal epithelial cells expanded on intact human amniotic membrane. Invest Ophthalmol Vis Sci 44:2959–2965

    PubMed  Google Scholar 

  78. Du Y, Chen J, Funderburgh JL, Zhu X, Li L (2003) Functional reconstruction of rabbit corneal epithelium by human limbal cells cultured on amniotic membrane. Mol Vis 9:635–643

    PubMed  CAS  Google Scholar 

  79. Ma DH, Lai JY, Cheng HY, Tsai CC, Yeh LK (2010) Carbodiimide cross-linked amniotic membranes for cultivation of limbal epithelial cells. Biomaterials 31:6647–6658

    PubMed  CAS  Google Scholar 

  80. Lim LS, Poh RW, Riau AK, Beuerman RW, Tan D, Mehta JS (2010) Biological and ultrastructural properties of acelagraft, a freeze-dried gamma-irradiated human amniotic membrane. Arch Ophthalmol 128:1303–1310

    PubMed  CAS  Google Scholar 

  81. Singh R, Gupta P, Kumar P, Kumar A, Chacharkar MP (2003) Properties of air dried radiation processed amniotic membranes under different storage conditions. Cell Tissue Bank 4:95–100

    PubMed  Google Scholar 

  82. Thomasen H, Pauklin M, Steuhl KP, Meller D (2009) Comparison of cryopreserved and air-dried human amniotic membrane for ophthalmologic applications. Graefes Arch Clin Exp Ophthalmol 247:1691–1700

    PubMed  Google Scholar 

  83. Connon CJ, Doutch J, Chen B, Hopkinson A, Mehta JS, Nakamura T et al (2010) The variation in transparency of amniotic membrane used in ocular surface regeneration. Br J Ophthalmol 94:1057–1061

    PubMed  CAS  Google Scholar 

  84. Rahman I, Said DG, Maharajan VS, Dua HS (2009) Amniotic membrane in ophthalmology: indications and limitations. Eye 23:1954–1961

    PubMed  CAS  Google Scholar 

  85. Hopkinson A, McIntosh RS, Tighe PJ, James DK, Dua HS (2006) Amniotic membrane for ocular surface reconstruction: donor variations and the effect of handling on TGF-beta content. Invest Ophthalmol Vis Sci 47:4316–4322

    PubMed  Google Scholar 

  86. Talbot M, Carrier P, Giasson CJ, Deschambeault A, Guerin SL, Auger FA et al (2006) Autologous transplantation of rabbit limbal epithelia cultured on fibrin gels for ocular surface reconstruction. Mol Vis 12:65–75

    PubMed  CAS  Google Scholar 

  87. Higa K, Takeshima N, Moro F, Kawakita T, Kawashima M, Demura M et al (2010) Porous silk fibroin film as a transparent carrier for cultivated corneal epithelial sheets. J Biomater Sci Polym Ed. doi:10.1163/092050610X538218

    PubMed  Google Scholar 

  88. Bray LJ, George KA, Ainscough SL, Hutmacher DW, Chirila TV, Harkin DG (2011) Human corneal epithelial equivalents constructed on Bombyx mori silk fibroin membranes. Biomaterials 32:5086–5091

    PubMed  CAS  Google Scholar 

  89. Mi S, Chen B, Wright B, Connon CJ (2010) Ex vivo construction of an artificial ocular surface by combination of corneal limbal epithelial cells and a compressed collagen scaffold containing keratocytes. Tissue Eng Part A 16:2091–2100

    PubMed  CAS  Google Scholar 

  90. Levis HJ, Brown RA, Daniels JT (2010) Plastic compressed collagen as a biomimetic substrate for human limbal epithelial cell culture. Biomaterials 31:7726–7737

    PubMed  CAS  Google Scholar 

  91. Mi S, Chen B, Wright B, Connon CJ (2010) Plastic compression of a collagen gel forms a much improved scaffold for ocular surface tissue engineering over conventional collagen gels. J Biomed Mater Res A 95:447–453

    PubMed  Google Scholar 

  92. Barbaro V, Ferrari S, Fasolo A, Ponzin D, Di Iorio E (2009) Reconstruction of a human hemicornea through natural scaffolds compatible with the growth of corneal epithelial stem cells and stromal keratocytes. Mol Vis 15:2084–2093

    PubMed  CAS  Google Scholar 

  93. Zajicova A, Pokorna K, Lencova A, Krulova M, Svobodova E, Kubinova S et al (2010) Treatment of ocular surface injuries by limbal and mesenchymal stem cells growing on nanofiber scaffolds. Cell Transplant 19:1281–1290

    PubMed  Google Scholar 

  94. Deshpande P, McKean R, Blackwood KA, Senior RA, Ogunbanjo A, Ryan AJ et al (2010) Using poly(lactide-co-glycolide) electrospun scaffolds to deliver cultured epithelial cells to the cornea. Regen Med 5:395–401

    PubMed  CAS  Google Scholar 

  95. Sharma S, Mohanty S, Gupta D, Jassal M, Agrawal AK, Tandon R (2011) Cellular response of limbal epithelial cells on electrospun poly-epsilon-caprolactone nanofibrous scaffolds for ocular surface bioengineering: a preliminary in vitro study. Mol Vis 17:2898–2910

    PubMed  CAS  Google Scholar 

  96. Fiorica C, Senior RA, Pitarresi G, Palumbo FS, Giammona G, Deshpande P et al (2011) Biocompatible hydrogels based on hyaluronic acid cross-linked with a polyaspartamide derivative as delivery systems for epithelial limbal cells. Int J Pharm 414:104–111

    PubMed  CAS  Google Scholar 

  97. Di Girolamo N, Chui J, Wakefield D, Coroneo MT (2007) Cultured human ocular surface epithelium on therapeutic contact lenses. Br J Ophthalmol 91:459–464

    PubMed  Google Scholar 

  98. Li DQ, Chen Z, Song XJ, de Paiva CS, Kim HS, Pflugfelder SC (2005) Partial enrichment of a population of human limbal epithelial cells with putative stem cell properties based on collagen type IV adhesiveness. Exp Eye Res 80:581–590

    PubMed  CAS  Google Scholar 

  99. Kito K, Kagami H, Kobayashi C, Ueda M, Terasaki H (2005) Effects of cryopreservation on histology and viability of cultured corneal epithelial cell sheets in rabbit. Cornea 24:735–741

    PubMed  Google Scholar 

  100. Ahmadiankia N, Ebrahimi M, Hosseini A, Baharvand H (2009) Effects of different extracellular matrices and co-cultures on human limbal stem cell expansion in vitro. Cell Biol Int 33:978–987

    PubMed  CAS  Google Scholar 

  101. Sudha B, Jasty S, Krishnan S, Krishnakumar S (2009) Signal transduction pathway involved in the ex vivo expansion of limbal epithelial cells cultured on various substrates. Indian J Med Res 129:382–389

    PubMed  CAS  Google Scholar 

  102. Nishida K, Yamato M, Hayashida Y, Watanabe K, Yamamoto K, Adachi E et al (2004) Corneal reconstruction with tissue-engineered cell sheets composed of autologous oral mucosal epithelium. N Engl J Med 351:1187–1196

    PubMed  CAS  Google Scholar 

  103. Nishida K, Yamato M, Hayashida Y, Watanabe K, Maeda N, Watanabe H et al (2004) Functional bioengineered corneal epithelial sheet grafts from corneal stem cells expanded ex vivo on a temperature-responsive cell culture surface. Transplantation 77:379–385

    PubMed  Google Scholar 

  104. Hayashi R, Yamato M, Takayanagi H, Oie Y, Kubota A, Hori Y et al (2010) Validation system of tissue engineered epithelial cell sheets for corneal regenerative medicine. Tissue Eng Part C Methods 16:553–560

    PubMed  CAS  Google Scholar 

  105. Sudha B, Madhavan HN, Sitalakshmi G, Malathi J, Krishnakumar S, Mori Y et al (2006) Cultivation of human corneal limbal stem cells in Mebiol gel—A thermo-reversible gelation polymer. Indian J Med Res 124:655–664

    PubMed  CAS  Google Scholar 

  106. Sitalakshmi G, Sudha B, Madhavan HN, Vinay S, Krishnakumar S, Mori Y et al (2008) Ex vivo cultivation of corneal limbal epithelial cells in a thermoreversible polymer (Mebiol gel) and their transplantation in rabbits: an animal model. Tissue Eng Part A 75:402–415

    Google Scholar 

  107. Francis D, Abberton K, Thompson E, Daniell M (2009) Myogel supports the ex-vivo amplification of corneal epithelial cells. Exp Eye Res 88:339–346

    PubMed  CAS  Google Scholar 

  108. Xie HT, Chen SY, Li GG, Tseng SC (2011) Limbal epithelial stem/progenitor cells attract stromal niche cells by SDF-1/CXCR4 signaling to prevent differentiation. Stem Cells 29:1874–1885

    PubMed  CAS  Google Scholar 

  109. Dravida S, Gaddipati S, Griffith M, Merrett K, Lakshmi Madhira S, Sangwan VS et al (2008) A biomimetic scaffold for culturing limbal stem cells: a promising alternative for clinical transplantation. J Tissue Eng Regen Med 2:263–271

    PubMed  CAS  Google Scholar 

  110. Utheim TP, Raeder S, Utheim OA, Cai Y, Roald B, Drolsum L et al (2007) A novel method for preserving cultured limbal epithelial cells. Br J Ophthalmol 91:797–800

    PubMed  Google Scholar 

  111. Raeder S, Utheim TP, Utheim OA, Cai Y, Roald B, Lyberg T et al (2007) Effect of limbal explant orientation on the histology, phenotype, ultrastructure and barrier function of cultured limbal epithelial cells. Acta Ophthalmol Scand 85:377–386

    PubMed  CAS  Google Scholar 

  112. Meller D, Tseng SC (1999) Conjunctival epithelial cell differentiation on amniotic membrane. Invest Ophthalmol Vis Sci 40:878–886

    PubMed  CAS  Google Scholar 

  113. James SE, Rowe A, Ilari L, Daya S, Martin R (2001) The potential for eye bank limbal rings to generate cultured corneal epithelial allografts. Cornea 20:488–494

    PubMed  CAS  Google Scholar 

  114. Meyer-Blazejewska EA, Kruse FE, Bitterer K, Meyer C, Hofmann-Rummelt C, Wunsch PH (2010) Preservation of the limbal stem cell phenotype by appropriate culture techniques. Invest Ophthalmol Vis Sci 51:765–774

    PubMed  Google Scholar 

  115. Notara M, Shortt AJ, O’Callaghan AR, Daniels JT (2012) The impact of age on the physical and cellular properties of the human limbal stem cell niche. Age (Dordr). doi:10.1007/s11357-011-9359-5

    Google Scholar 

  116. Chang CY, McGhee JJ, Green CR, Sherwin T (2011) Comparison of stem cell properties in cell populations isolated from human central and limbal corneal epithelium. Cornea 30:1155–1162

    PubMed  Google Scholar 

  117. Zito-Abbad E, Borderie VM, Baudrimont M, Bourcier T, Laroche L, Chapel C et al (2006) Corneal epithelial cultures generated from organ-cultured limbal tissue: factors influencing epithelial cell growth. Curr Eye Res 31:391–399

    PubMed  Google Scholar 

  118. Shanmuganathan VA, Rotchford AP, Tullo AB, Joseph A, Zambrano I, Dua HS (2006) Epithelial proliferative potential of organ cultured corneoscleral rims; implications for allo-limbal transplantation and eye banking. Br J Ophthalmol 90:55–58

    PubMed  CAS  Google Scholar 

  119. Kim HS, Jun Song X, de Paiva CS, Chen Z, Pflugfelder SC, Li DQ (2004) Phenotypic characterization of human corneal epithelial cells expanded ex vivo from limbal explant and single cell cultures. Exp Eye Res 79:41–49

    PubMed  CAS  Google Scholar 

  120. Utheim TP, Raeder S, Olstad OK, Utheim OA, de LaPaz M, Cheng R et al (2009) Comparison of the histology, gene expression profile, and phenotype of cultured human limbal epithelial cells from different limbal regions. Invest Ophthalmol Vis Sci 50:5165–5172

    PubMed  Google Scholar 

  121. Shortt AJ, Secker GA, Munro PM, Khaw PT, Tuft SJ, Daniels JT (2007) Characterization of the limbal epithelial stem cell niche: novel imaging techniques permit in vivo observation and targeted biopsy of limbal epithelial stem cells. Stem Cells 25:1402–1409

    PubMed  Google Scholar 

  122. Pellegrini G, Golisano O, Paterna P, Lambiase A, Bonini S, Rama P et al (1999) Location and clonal analysis of stem cells and their differentiated progeny in the human ocular ­surface. J Cell Biol 145:769–782

    PubMed  CAS  Google Scholar 

  123. Espana EM, Romano AC, Kawakita T, Di Pascuale M, Smiddy R, Tseng SC (2003) Novel enzymatic isolation of an entire viable human limbal epithelial sheet. Invest Ophthalmol Vis Sci 44:4275–4281

    PubMed  Google Scholar 

  124. Chen SY, Hayashida Y, Chen MY, Xie HT, Tseng SC (2010) A new isolation method of human limbal progenitor cells by maintaining close association with their niche cells. Tissue Eng Part C Methods 17:537–548

    Google Scholar 

  125. Kawakita T, Shimmura S, Higa K, Espana EM, He H, Shimazaki J et al (2009) Greater growth potential of p63-positive epithelial cell clusters maintained in human limbal epithelial sheets. Invest Ophthalmol Vis Sci 50:4611–4617

    PubMed  Google Scholar 

  126. Cristovam PC, Gloria MA, Melo GB, Gomes JA (2008) Importancia do co-cultivo com fibroblastos de camundongo 3T3 para estabelecer cultura de suspensao de celulas epiteliais do limbo humano. Arq Bras Oftalmol 71:689–694

    PubMed  Google Scholar 

  127. Schwab IR, Johnson NT, Harkin DG (2006) Inherent risks associated with manufacture of bioengineered ocular surface tissue. Arch Ophthalmol 124:1734–1740

    PubMed  Google Scholar 

  128. Selver OB, Barash A, Ahmed M, Wolosin JM (2011) ABCG2-dependent dye exclusion activity and clonal potential in epithelial cells continuously growing for one month from limbal explants. Invest Ophthalmol Vis Sci 52:4330–4337

    PubMed  CAS  Google Scholar 

  129. Schofield R (1983) The stem cell system. Biomed Pharmacother 37:375–380

    PubMed  CAS  Google Scholar 

  130. Watt FM (2000) Out of Eden: stem cells and their niches. Science 287:1427–1430

    PubMed  CAS  Google Scholar 

  131. Joseph A, Powell-Richards AO, Shanmuganathan VA, Dua HS (2004) Epithelial cell characteristics of cultured human limbal explants. Br J Ophthalmol 88:393–398

    PubMed  CAS  Google Scholar 

  132. Kolli S, Lako M, Figueiredo F, Mudhar H, Ahmad S (2008) Loss of corneal epithelial stem cell properties in outgrowths from human limbal explants cultured on intact amniotic membrane. Regen Med 3:329–342

    PubMed  CAS  Google Scholar 

  133. Zhang X, Sun H, Tang X, Ji J, Li X, Sun J et al (2005) Comparison of cell-suspension and explant culture of rabbit limbal epithelial cells. Exp Eye Res 80:227–233

    PubMed  CAS  Google Scholar 

  134. Tan EK, He H, Tseng SC (2011) Epidermal differentiation and loss of clonal growth potential of human limbal basal epithelial progenitor cells during intrastromal ­invasion. Invest Ophthalmol Vis Sci 52:4534–4545

    PubMed  CAS  Google Scholar 

  135. Li W, Hayashida Y, He H, Kuo CL, Tseng SC (2007) The fate of limbal epithelial progenitor cells during explant culture on intact amniotic membrane. Invest Ophthalmol Vis Sci 48:605–613

    PubMed  Google Scholar 

  136. Koizumi N, Cooper LJ, Fullwood NJ, Nakamura T, Inoki K, Tsuzuki M et al (2002) An evaluation of cultivated corneal limbal epithelial cells, using cell-suspension culture. Invest Ophthalmol Vis Sci 43:2114–2121

    PubMed  Google Scholar 

  137. Deshpande P, Notara M, Bullett N, Daniels JT, Haddow DB, MacNeil S (2009) Development of a surface modified contact lens for transfer of cultured limbal epithelial cells for ocular surface diseases. Tissue Eng Part A 15:2889–2902

    PubMed  CAS  Google Scholar 

  138. Raeder S et al (2008) Effects of the size of explants on adhesion and outgrowth of ex vivo expanded limbal epithelial cells. Invest Ophthalmol Vis Sci 47, E-Abstract 5717

    Google Scholar 

  139. Steele JG, Johnson G, Griesser HJ, Underwood PA (1997) Mechanism of initial attachment of corneal epithelial cells to polymeric surfaces. Biomaterials 18:1541–1551

    PubMed  CAS  Google Scholar 

  140. Liu L, Hartwig D, Harloff S, Herminghaus P, Wedel T, Geerling G (2005) An optimised protocol for the production of autologous serum eyedrops. Graefes Arch Clin Exp Ophthalmol 243:706–714

    PubMed  CAS  Google Scholar 

  141. Thomas L (1998) Labor und diagnose. indikation und Bewertung von laborbefunden für die medizinische diagnostik, 5th edn. TH-Books, Frankfurt/Main, p 1494

    Google Scholar 

  142. Dugrillon A et al (2002) Platelets applied to wounds and in tissue regeneration: induction of proliferation apoptosis by platelet membranes. In: Mempel W, Schramm W (eds) Infusion therapy and transfusion medicine. Kluwer Academic, Amsterdam, pp 70–71

    Google Scholar 

  143. Geerling G, Hartwig D (2005) Autologous serum eye drops for ocular surface disorders. In: Reinhard T, Larkin DFP (eds) Cornea and external eye disease. Springer, Berlin, pp 2–18

    Google Scholar 

  144. Geerling G, Maclennan S, Hartwig D (2004) Autologous serum eye drops for ocular surface disorders. Br J Ophthalmol 88:1467–1474

    PubMed  CAS  Google Scholar 

  145. Green H, Kehinde O, Thomas J (1979) Growth of cultured human epidermal cells into multiple epithelia suitable for grafting. Proc Natl Acad Sci U S A 76:5665–5668

    PubMed  CAS  Google Scholar 

  146. Nakamura T, Ang LP, Rigby H, Sekiyama E, Inatomi T, Sotozono C et al (2006) The use of autologous serum in the development of corneal and oral epithelial equivalents in patients with Stevens-Johnson syndrome. Invest Ophthalmol Vis Sci 47:909–916

    PubMed  Google Scholar 

  147. Shahdadfar A, Haug K, Pathak M, Drolsum L, Olstad OK, Johnsen EO et al (2012) Ex Vivo expanded autologous limbal epithelial cells on amniotic membrane using a culture medium with human serum as single supplement. Exp Eye Res 97:1–9

    PubMed  CAS  Google Scholar 

  148. Ban Y, Cooper LJ, Fullwood NJ, Tsuzuki M, Koizumi N, Dota A et al (2003) Comparison of ultrastructure, tight junction-related protein expression and barrier function of human corneal epithelial cells cultivated on amniotic membrane with and without air-lifting. Exp Eye Res 76:735–743

    PubMed  CAS  Google Scholar 

  149. Ghoubay-Benallaoua D, Basli E, Goldschmidt P, Pecha F, Chaumail C, Laroche L et al (2011) Human epithelial cell cultures from superficial limbal explants. Mol Vis 17:341–354

    PubMed  CAS  Google Scholar 

  150. D’Ippolito G, Diabira S, Howard GA, Roos BA, Schiller PC (2006) Low oxygen tension inhibits osteogenic differentiation and enhances stemness of human MIAMI cells. Bone 39:513–522

    PubMed  Google Scholar 

  151. Cipolleschi MG, Dello SP, Olivotto M (1993) The role of hypoxia in the maintenance of hematopoietic stem cells. Blood 82:2031–2037

    PubMed  CAS  Google Scholar 

  152. Li C, Yin T, Dong N, Dong F, Fang X, Qu YL et al (2011) Oxygen tension affects terminal differentiation of corneal limbal epithelial cells. J Cell Physiol 226:2429–2437

    PubMed  CAS  Google Scholar 

  153. Miyashita H, Higa K, Kato N, Kawakita T, Yoshida S, Tsubota K et al (2007) Hypoxia enhances the expansion of human limbal epithelial progenitor cells in vitro. Invest Ophthalmol Vis Sci 48:3586–3593

    PubMed  Google Scholar 

  154. Higa K, Shimazaki J (2008) Recent advances in cultivated epithelial transplantation. Cornea 27:S41–S47

    PubMed  Google Scholar 

  155. O’Callaghan AR, Daniels JT, Mason C (2011) Effect of sub-atmospheric oxygen on the culture of rabbit limbal epithelial cells. Curr Eye Res 36:691–698

    PubMed  Google Scholar 

  156. Zakaria N, Koppen C, Van Tendeloo V, Berneman Z, Hopkinson A, Tassignon MJ (2010) Standardized limbal epithelial stem cell graft generation and transplantation. Tissue Eng Part C Methods 16:921–927

    PubMed  CAS  Google Scholar 

  157. Kawakita T, Espana EM, He H, Li W, Liu CY, Tseng SC (2005) Intrastromal invasion by limbal epithelial cells is mediated by epithelial-mesenchymal transition activated by air exposure. Am J Pathol 167:381–393

    PubMed  Google Scholar 

  158. Chen B, Mi S, Wright B, Connon CJ (2010) Differentiation status of limbal epithelial cells cultured on intact and denuded amniotic membrane before and after air-lifting. Tissue Eng Part A 16:2721–2729

    PubMed  Google Scholar 

  159. Li W, Hayashida Y, Chen YT, He H, Tseng DY, Alonso M et al (2008) Air exposure induced squamous metaplasia of human limbal epithelium. Invest Ophthalmol Vis Sci 49:154–162

    PubMed  Google Scholar 

  160. Kishida H, Kuroiwa Y (2007) Prevention of prion disease transmission. Nippon Rinsho 65:1454–1459

    PubMed  Google Scholar 

  161. Raeder S, Utheim TP, Messelt E, Lyberg T (2010) The impact of de-epithelialization of the amniotic membrane matrix on morphology of cultured human limbal epithelial cells ­subject to eye bank storage. Cornea 29:439–445

    PubMed  Google Scholar 

  162. Utheim TP, Raeder S, Utheim OA, de la Paz M, Raold B, Lyberg T (2009) Sterility control and long-term eye-bank storage of cultured human limbal epithelial cells for transplantation. Br J Ophthalmol 93:980–983

    PubMed  CAS  Google Scholar 

  163. Raeder S, Utheim TP, Utheim OA, Nicolaissen B, Raold B, Cai Y et al (2007) Effects of organ culture and optisol-GS storage on structural integrity, phenotypes, and apoptosis in cultured corneal epithelium. Invest Ophthalmol Vis Sci 48:5484–5493

    PubMed  Google Scholar 

  164. Utheim TP et al (2009) Storage of cultured human limbal epithelial cells in Optisol-GS at 23 °C versus 5 °C. Invest Ophthalmol Vis Sci 50, E-Abstract 1778

    Google Scholar 

  165. Raeder S et al (2009) Genome-wide transcriptional analysis of cultured human limbal epithelial cells following hypothermic storage Optisol-GS. Invest Ophthalmol Vis Sci 50, E-Abstract 1773/A441

    Google Scholar 

  166. Utheim TP et al (2011) Comparison of storage of cultured human limbal epithelial cells in HEPES-MEM, Optisol-GS and PAA Quantum 286 for 4 days at 23 °C. Invest Ophthalmol Vis Sci 52, E-Abstract 5124

    Google Scholar 

  167. Utheim TP et al (2012) Transportation simulations of cultured human limbal epithelial cells subjected to eye-bank storage. Invest Ophthalmol Vis Sci 53, E-Abstract 183

    Google Scholar 

Download references

Acknowledgments

The authors thank Astrid Østerud at the Department of Ophthalmology, Oslo University Hospital, Norway; Ingrid Riphagen at the Unit for Applied Clinical Research, Norwegian University of Science and Technology, Norway; Øygunn Aass Utheim and Jon Roger Eidet at the Department of Medical Biochemistry, Oslo University Hospital, Norway; Borghild Roald at the Department of Pathology, Oslo University Hospital, Norway; Edward Messelt at the Institute of Oral Biology, Dental Faculty, University of Oslo, Norway for excellent help and support.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this protocol

Cite this protocol

Utheim, T.P., Lyberg, T., Ræder, S. (2013). The Culture of Limbal Epithelial Cells. In: Wright, B., Connon, C. (eds) Corneal Regenerative Medicine. Methods in Molecular Biology, vol 1014. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-432-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-432-6_7

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-431-9

  • Online ISBN: 978-1-62703-432-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics