Skip to main content

The Fine Balance of Chemokines During Disease: Trafficking, Inflammation, and Homeostasis

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1013))

Abstract

The action of chemokines (or “chemotactic cytokines”) is recognized as an integral part of inflammatory and regulatory processes. Leukocyte mobilization during physiological conditions, trafficking of various cell types during pathological conditions, cell activation, and angiogenesis are among the target functions exerted by chemokines upon signaling via their specific receptors. Current research is focused in analyzing changes in chemokine/chemokine receptor patterns during various diseases with the aim to modulate pathological trafficking of cells, or to attract particular cell types to specific tissues. This review focuses on defining the role(s) of certain chemokine ligands and receptors in inflammatory neurological conditions such as multiple sclerosis. In addition, the role(s) of chemokines in neurodegenerative conditions such as Alzheimer’s disease and Parkinson’s disease is also described, as well as the contribution of chemokines to the pathogenesis of cancer, diabetes, and cardiovascular disease.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Alejo A, Tafalla C (2011) Chemokines in teleost fish species. Dev Comp Immunol 35:1215–1222

    Article  PubMed  CAS  Google Scholar 

  2. Ulvmar MH, Hub E, Rot A (2011) Atypical chemokine receptors. Exp Cell Res 317:556–568

    Article  PubMed  CAS  Google Scholar 

  3. Graham GJ, Locati M, Mantovani A, Rot A, Thelen M (2012) The biochemistry and biology of the atypical chemokine receptors. Immunol Lett 145:30–38

    Article  PubMed  CAS  Google Scholar 

  4. Hansell CA, Hurson CE, Nibbs RJ (2011) DARC and D6: silent partners in chemokine regulation? Immunol Cell Biol 89:197–206

    Article  PubMed  CAS  Google Scholar 

  5. Strieter RM, Polverini PJ, Kunkel SL, Arenberg DA, Burdick MD, Kasper J et al (1995) The functional role of the ELR motif in CXC chemokine-mediated angiogenesis. J Biol Chem 270:27348–27357

    Article  PubMed  CAS  Google Scholar 

  6. IUISW/WHO Subcommittee on Chemokine nomenclature (2003) Chemokine/chemokine receptor nomenclature. Cytokine 21, 48–49

    Google Scholar 

  7. Bacon K, Baggiolini M, Broxmeyer H, Horuk R, Lindley I, Mantovani A et al (2002) Chemokine/chemokine receptor nomenclature. J Interferon Cytokine Res 22:1067–1068

    Article  PubMed  Google Scholar 

  8. Zlotnik A, Yoshie O, Nomiyama H (2006) The chemokine and chemokine receptor superfamilies and their molecular evolution. Genome Biol 7:243

    Google Scholar 

  9. Noseworthy JH, Lucchinetti C, Rodriguez M, Weinshenker BG (2000) Multiple sclerosis. N Engl J Med 343:938–952

    Article  PubMed  CAS  Google Scholar 

  10. Dutta R, Trapp BD (2011) Mechanisms of neuronal dysfunction and degeneration in multiple sclerosis. Prog Neurobiol 93:1–12

    Article  PubMed  Google Scholar 

  11. Trapp BD, Nave KA (2008) Multiple sclerosis: an immune or neurodegenerative disorder? Annu Rev Neurosci 31:247–269

    Article  PubMed  CAS  Google Scholar 

  12. Chao MJ, Barnardo MC, Lincoln MR, Ramagopalan SV, Herrera BM, Dyment DA et al (2008) HLA class I alleles tag HLA-DRB1*1501 haplotypes for differential risk in multiple sclerosis susceptibility. Proc Natl Acad Sci USA 105:13069–13074

    Article  PubMed  CAS  Google Scholar 

  13. Ramagopalan SV, Herrera BM, Bell JT, Dyment DA, Deluca GC, Lincoln MR et al (2008) Parental transmission of HLA-DRB1*15 in multiple sclerosis. Hum Genet 122:661–663

    Article  PubMed  CAS  Google Scholar 

  14. Baranzini SE, Nickles D (2012) Genetics of multiple sclerosis: swimming in an ocean of data. Curr Opin Neurol 25:239–245

    Article  PubMed  Google Scholar 

  15. Sawcer S, Hellenthal G, Pirinen M, Spencer CC, Patsopoulos NA, Moutsianas L et al (2011) Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis. Nature 476:214–219

    Article  PubMed  CAS  Google Scholar 

  16. Acheson ED, Bachrach CA, and Wright FM. (1960) Some comments on the relationship of the distribution of multiple sclerosis to latitude, solar radiation, and other variables. Acta Psychiatr Scand Suppl 35:132–147

    Google Scholar 

  17. Ramagopalan SV, Heger A, Berlanga AJ, Maugeri NJ, Lincoln MR, Burrell A et al (2010) A ChIP-seq defined genome-wide map of vitamin D receptor binding: associations with disease and evolution. Genome Res 20:1352–1360

    Article  PubMed  CAS  Google Scholar 

  18. Ramagopalan SV, Maugeri NJ, Handunnetthi L, Lincoln MR, Orton SM, Dyment, DA et al (2009) Expression of the multiple sclerosis-associated MHC class II Allele HLA-DRB1*1501 is regulated by vitamin D. PLoS Genet 5, e1000369

    Google Scholar 

  19. Saederup,N., Cardona,A.E., Croft,K., Mizutani,M., Cotleur,A.C., Tsou,C.L.et al. (2010) Selective chemokine receptor usage by central nervous system myeloid cells in CCR2-red fluorescent protein knock-in mice. PLoS One 5, e13693-

    Google Scholar 

  20. Bennett JL, Elhofy A, Charo I, Miller SD, Dal Canto MC, Karpus WJ (2007) CCR2 regulates development of Theiler’s murine encephalomyelitis virus-induced demyelinating disease. Viral Immunol 20:19–33

    Article  PubMed  CAS  Google Scholar 

  21. Kowarik MC, Cepok S, Sellner J, Grummel V, Weber MS, Korn T, et al (2012) CXCL13 is the major determinant for B cell recruitment to the CSF during neuroinflammation. J Neuroinflammation 9:93

    Google Scholar 

  22. Mann MK, Ray A, Basu S, Karp CL, Dittel BN (2012) Pathogenic and regulatory roles for B cells in experimental autoimmune encephalomyelitis. Autoimmunity 45:388–399

    Article  PubMed  CAS  Google Scholar 

  23. Cardona A, Pioro EP, Sasse ME, Kostenko V, Cardona SM, Dijkstra IM et al (2006) Control of microglial neurotoxicity by the fractalkine receptor. Nat Neurosci 9:917–924

    Article  PubMed  CAS  Google Scholar 

  24. King IL, Dickendesher TL, Segal BM (2009) Circulating Ly-6C+ myeloid precursors migrate to the CNS and play a pathogenic role during autoimmune demyelinating disease. Blood 113:3190–3197

    Article  PubMed  CAS  Google Scholar 

  25. Yang J, Yan Y, Ma CG, Kang T, Zhang N, Gran B et al (2012) Accelerated and enhanced effect of CCR5-transduced bone marrow neural stem cells on autoimmune encephalomyelitis. Acta Neuropathol

    Google Scholar 

  26. Kuwabara T, Ishikawa F, Yasuda T, Aritomi K, Nakano H, Tanaka Y et al (2009) CCR7 ligands are required for development of experimental autoimmune encephalomyelitis through generating IL-23-dependent Th17 cells. J Immunol 183:2513–2521

    Article  PubMed  CAS  Google Scholar 

  27. Kelland EE, Gilmore W, Weiner LP, Lund BT (2011) The dual role of CXCL8 in human CNS stem cell function: Multipotent neural stem cell death and oligodendrocyte progenitor cell chemotaxis. Glia 59:1864–1878

    Article  PubMed  Google Scholar 

  28. Meiron M, Zohar Y, Anunu R, Wildbaum G, Karin N (2008) CXCL12 (SDF-1alpha) suppresses ongoing experimental autoimmune encephalomyelitis by selecting antigen-specific regulatory T cells. J Exp Med 205:2643–2655

    Article  PubMed  CAS  Google Scholar 

  29. Kohler RE, Comerford I, Townley S, Haylock-Jacobs S, Clark-Lewis I, McColl SR (2008) Antagonism of the chemokine receptors CXCR3 and CXCR4 reduces the pathology of experimental autoimmune encephalomyelitis. Brain Pathol 18:504–516

    PubMed  CAS  Google Scholar 

  30. Banisadr G, Frederick TJ, Freitag C, Ren D, Jung H, Miller SD et al (2011) The role of CXCR4 signaling in the migration of transplanted oligodendrocyte progenitors into the cerebral white matter. Neurobiol Dis 44:19–27

    PubMed  CAS  Google Scholar 

  31. Zou YR, Kottmann AH, Kuroda M, Taniuchi I, Littman DR (1998) Function of the chemokine receptor CXCR4 in haematopoiesis and in cerebellar development. Nature 393:595–599

    Article  PubMed  CAS  Google Scholar 

  32. Shimoji M, Pagan F, Healton EB, Mocchetti I (2009) CXCR4 and CXCL12 expression is increased in the nigro-striatal system of Parkinson’s disease. Neurotox Res 16:318–328

    Article  PubMed  CAS  Google Scholar 

  33. Rogers JT, Morganti JM, Bachstetter AD, Hudson CE, Peters MM, Grimmig BA et al (2011) CX3CR1 deficiency leads to impairment of hippocampal cognitive function and synaptic plasticity. J Neurosci 31:16241–16250

    Article  PubMed  CAS  Google Scholar 

  34. Pabon MM, Bachstetter AD, Hudson CE, Gemma C, Bickford PC (2011) CX3CL1 reduces neurotoxicity and microglial activation in a rat model of Parkinson’s disease. J Neuroinflammation 8:9

    Google Scholar 

  35. Bhaskar K, Konerth M, Kokiko-Cochran ON, Cardona A, Ransohoff RM, Lamb BT (2010) Regulation of tau pathology by the microglial fractalkine receptor. Neuron 68:19–31

    Article  PubMed  CAS  Google Scholar 

  36. Fuhrmann M, Bittner T, Jung CK, Burgold S, Page RM, Mitteregger G et al (2010) Microglial Cx3cr1 knockout prevents neuron loss in a mouse model of Alzheimer’s disease. Nat Neurosci 13:411–413

    Article  PubMed  CAS  Google Scholar 

  37. Lee S, Varvel NH, Konerth ME, Xu G, Cardona AE, Ransohoff RM et al (2010) CX3CR1 deficiency alters microglial activation and reduces beta-amyloid deposition in two Alzheimer’s disease mouse models. Am J Pathol 177:2549–2562

    Article  PubMed  CAS  Google Scholar 

  38. Liu Z, Condello C, Schain A, Harb R, Grutzendler J (2010) CX3CR1 in microglia regulates brain amyloid deposition through selective protofibrillar amyloid-beta phagocytosis. J Neurosci 30:17091–17101

    Article  PubMed  CAS  Google Scholar 

  39. Cho SH, Sun B, Zhou Y, Kauppinen TM, Halabisky B, Wes P et al (2011) CX3CR1 protein signaling modulates microglial activation and protects against plaque-independent cognitive deficits in a mouse model of Alzheimer disease. J Biol Chem 286:32713–32722

    Article  PubMed  CAS  Google Scholar 

  40. Scalzo P, de Miranda AS, Guerra Amaral DC, de CV, Cardoso F, Teixeira AL (2011) Serum levels of chemokines in Parkinson’s disease. Neuroimmunol 18:240–244

    Google Scholar 

  41. Westin K, Buchhave P, Nielsen H, Minthon L, Janciauskiene S, Hansson O (2012) CCL2 is associated with a faster rate of cognitive decline during early stages of Alzheimer’s disease. PLoS One 7, e30525

    Google Scholar 

  42. Arya M, Patel HR, Williamson M (2003) Chemokines: key players in cancer. Curr Med Res Opin 19:557–564

    Article  PubMed  CAS  Google Scholar 

  43. Zhu,Q., Han,X., Peng,J., Qin,H., and Wang,Y. (2012) The role of CXC chemokines and their receptors in the progression and treatment of tumors. J Mol Histol 43(6):699–713

    Google Scholar 

  44. Balkwill F (2004) The significance of cancer cell expression of the chemokine receptor CXCR4. Semin Cancer Biol 14:171–179

    Article  PubMed  CAS  Google Scholar 

  45. Zipin-Roitman A, Meshel T, Sagi-Assif O, Shalmon B, Avivi C, Pfeffer RM et al (2007) CXCL10 promotes invasion-related properties in human colorectal carcinoma cells. Cancer Res 67:3396–3405

    Article  PubMed  CAS  Google Scholar 

  46. Mehrad B, Keane MP, Strieter RM (2007) Chemokines as mediators of angiogenesis. Thromb Haemost 97:755–762

    PubMed  CAS  Google Scholar 

  47. Singh RK, Gutman M, Radinsky R, Bucana CD, Fidler IJ (1994) Expression of interleukin 8 correlates with the metastatic potential of human melanoma cells in nude mice. Cancer Res 54:3242–3247

    PubMed  CAS  Google Scholar 

  48. Youngs SJ, Ali SA, Taub DD, Rees RC (1997) Chemokines induce migrational responses in human breast carcinoma cell lines. Int J Cancer 71:257–266

    Article  PubMed  CAS  Google Scholar 

  49. Inoue K, Slaton JW, Kim SJ, Perrotte P, Eve BY, Bar-Eli M et al (2000) Interleukin 8 expression regulates tumorigenicity and metastasis in human bladder cancer. Cancer Res 60:2290–2299

    PubMed  CAS  Google Scholar 

  50. Guerra C, Schuhmacher AJ, Canamero M, Grippo PJ, Verdaguer L, Perez-Gallego L et al (2007) Chronic pancreatitis is essential for induction of pancreatic ductal adenocarcinoma by K-Ras oncogenes in adult mice. Cancer Cell 11:291–302

    Article  PubMed  CAS  Google Scholar 

  51. Sparmann A, Bar-Sagi D (2004) Ras-induced interleukin-8 expression plays a critical role in tumor growth and angiogenesis. Cancer Cell 6:447–458

    Article  PubMed  CAS  Google Scholar 

  52. Soucek L, Lawlor ER, Soto D, Shchors K, Swigart LB, Evan GI (2007) Mast cells are required for angiogenesis and macroscopic expansion of Myc-induced pancreatic islet tumors. Nat Med 13:1211–1218

    Article  PubMed  CAS  Google Scholar 

  53. Sodir NM, Swigart LB, Karnezis AN, Hanahan D, Evan GI, Soucek L (2011) Endogenous Myc maintains the tumor microenvironment. Genes Dev 25:907–916

    Article  PubMed  CAS  Google Scholar 

  54. Song EY, Shurin MR, Tourkova IL, Gutkin DW, Shurin GV (2010) Epigenetic mechanisms of promigratory chemokine CXCL14 regulation in human prostate cancer cells. Cancer Res 70:4394–4401

    Article  PubMed  CAS  Google Scholar 

  55. Erez N, Coussens LM (2011) Leukocytes as paracrine regulators of metastasis and determinants of organ-specific colonization. Int J Cancer 128:2536–2544

    Article  PubMed  CAS  Google Scholar 

  56. Gunther K, Leier J, Henning G, Dimmler A, Weissbach R, Hohenberger W et al (2005) Prediction of lymph node metastasis in colorectal carcinoma by expressionof chemokine receptor CCR7. Int J Cancer 116:726–733

    Article  PubMed  CAS  Google Scholar 

  57. Kim J, Mori T, Chen SL, Amersi FF, Martinez SR, Kuo C et al (2006) Chemokine receptor CXCR4 expression in patients with melanoma and colorectal cancer liver metastases and the association with disease outcome. Ann Surg 244:113–120

    Article  PubMed  Google Scholar 

  58. Kim J, Takeuchi H, Lam ST, Turner RR, Wang HJ, Kuo C et al (2005) Chemokine receptor CXCR4 expression in colorectal cancer patients increases the risk for recurrence and for poor survival. J Clin Oncol 23:2744–2753

    Article  PubMed  CAS  Google Scholar 

  59. Zeelenberg IS, Ruuls-Van SL, Roos E (2003) The chemokine receptor CXCR4 is required for outgrowth of colon carcinoma micrometastases. Cancer Res 63:3833–3839

    PubMed  CAS  Google Scholar 

  60. Ottaiano,A., di,P.A., Napolitano,M., Pisano,C., Pignata,S., Tatangelo,F.et al. (2005) Inhibitory effects of anti-CXCR4 antibodies on human colon cancer cells. Cancer Immunol Immunother 54, 781–791.

    Google Scholar 

  61. Amersi FF, Terando AM, Goto Y, Scolyer RA, Thompson JF, Tran AN et al (2008) Activation of CCR9/CCL25 in cutaneous melanoma mediates preferential metastasis to the small intestine. Clin Cancer Res 14:638–645

    Article  PubMed  CAS  Google Scholar 

  62. Marchesi F, Locatelli M, Solinas G, Erreni M, Allavena P, Mantovani A (2010) Role of CX3CR1/CX3CL1 axis in primary and secondary involvement of the nervous system by cancer. J Neuroimmunol 224:39–44

    Article  PubMed  CAS  Google Scholar 

  63. Marchesi F, Piemonti L, Mantovani A, Allavena P (2010) Molecular mechanisms of perineural invasion, a forgotten pathway of dissemination and metastasis. Cytokine Growth Factor Rev 21:77–82

    Article  PubMed  CAS  Google Scholar 

  64. Mantovani A, Allavena P, Sica A, Balkwill F (2008) Cancer-related inflammation. Nature 454:436–444

    Article  PubMed  CAS  Google Scholar 

  65. Allavena P, Germano G, Marchesi F, Mantovani A (2011) Chemokines in cancer related inflammation. Exp Cell Res 317:664–673

    Article  PubMed  CAS  Google Scholar 

  66. Vetrano S, Borroni EM, Sarukhan A, Savino B, Bonecchi R, Correale C et al (2010) The lymphatic system controls intestinal inflammation and inflammation-associated Colon Cancer through the chemokine decoy receptor D6. Gut 59:197–206

    Article  PubMed  Google Scholar 

  67. Qian BZ, Li J, Zhang H, Kitamura T, Zhang J, Campion LR et al (2011) CCL2 recruits inflammatory monocytes to facilitate breast-tumour metastasis. Nature 475:222–225

    Article  PubMed  CAS  Google Scholar 

  68. Bottazzi B, Polentarutti N, Acero R, Balsari A, Boraschi D, Ghezzi P et al (1983) Regulation of the macrophage content of neoplasms by chemoattractants. Science 220:210–212

    Article  PubMed  CAS  Google Scholar 

  69. Zhang J, Patel L, Pienta KJ (2010) CC chemokine ligand 2 (CCL2) promotes prostate cancer tumorigenesis and metastasis. Cytokine Growth Factor Rev 21:41–48

    Article  PubMed  CAS  Google Scholar 

  70. Arya M, Ahmed H, Silhi N, Williamson M, Patel HR (2007) Clinical importance and therapeutic implications of the pivotal CXCL12-CXCR4 (chemokine ligand-receptor) interaction in cancer cell migration. Tumour Biol 28:123–131

    Article  PubMed  Google Scholar 

  71. Wang J, Loberg R, Taichman RS (2006) The pivotal role of CXCL12 (SDF-1)/CXCR4 axis in bone metastasis. Cancer Metastasis Rev 25:573–587

    Article  PubMed  CAS  Google Scholar 

  72. DiPersio JF, Micallef IN, Stiff PJ, Bolwell BJ, Maziarz RT, Jacobsen E et al (2009) Phase III prospective randomized double-blind placebo-controlled trial of plerixafor plus granulocyte colony-stimulating factor compared with placebo plus granulocyte colony-stimulating factor for autologous stem-cell mobilization and transplantation for patients with non-Hodgkin’s lymphoma. J Clin Oncol 27:4767–4773

    Article  PubMed  CAS  Google Scholar 

  73. DiPersio JF, Stadtmauer EA, Nademanee A, Micallef IN, Stiff PJ, Kaufman JL et al (2009) Plerixafor and G-CSF versus placebo and G-CSF to mobilize hematopoietic stem cells for autologous stem cell transplantation in patients with multiple myeloma. Blood 113:5720–5726

    PubMed  CAS  Google Scholar 

  74. Dias S, Choy M, Rafii S (2001) The role of CXC chemokines in the regulation of tumor angiogenesis. Cancer Invest 19:732–738

    Article  PubMed  CAS  Google Scholar 

  75. Addison CL, Arenberg DA, Morris SB, Xue YY, Burdick MD, Mulligan MS et al (2000) The CXC chemokine, monokine induced by interferon-gamma, inhibits non-small cell lung carcinoma tumor growth and metastasis. Hum Gene Ther 11:247–261

    Article  PubMed  CAS  Google Scholar 

  76. Evans JL, Goldfine ID, Maddux BA, Grodsky GM (2002) Oxidative stress and stress-activated signaling pathways: a unifying hypothesis of type 2 diabetes. Endocr Rev 23:599–622

    Article  PubMed  CAS  Google Scholar 

  77. Evans JL, Goldfine ID, Maddux BA, Grodsky GM (2003) Are oxidative stress-activated signaling pathways mediators of insulin resistance and beta-cell dysfunction? Diabetes 52:1–8

    Article  PubMed  CAS  Google Scholar 

  78. Hotamisligil GS (2010) Endoplasmic reticulum stress and the inflammatory basis of metabolic disease. Cell 140:900–917

    Article  PubMed  CAS  Google Scholar 

  79. Zraika S, Hull RL, Verchere CB, Clark A, Potter KJ, Fraser PE et al (2010) Toxic oligomers and islet beta cell death: guilty by association or convicted by circumstantial evidence? Diabetologia 53:1046–1056

    Article  PubMed  CAS  Google Scholar 

  80. Unger RH (1995) Lipotoxicity in the pathogenesis of obesity-dependent NIDDM. Genetic and clinical implications Diabetes 44:863–870

    CAS  Google Scholar 

  81. Unger RH, Clark GO, Scherer PE, Orci L (2010) Lipid homeostasis, lipotoxicity and the metabolic syndrome. Biochim Biophys Acta 1801:209–214

    Article  PubMed  CAS  Google Scholar 

  82. Yki-Jarvinen H, Helve E, Koivisto VA (1987) Hyperglycemia decreases glucose uptake in type I diabetes. Diabetes 36:892–896

    Article  PubMed  CAS  Google Scholar 

  83. Rossetti L, Smith D, Shulman GI, Papachristou D, DeFronzo RA (1987) Correction of hyperglycemia with phlorizin normalizes tissue sensitivity to insulin in diabetic rats. J Clin Invest 79:1510–1515

    Article  PubMed  CAS  Google Scholar 

  84. Hotamisligil GS, Erbay E (2008) Nutrient sensing and inflammation in metabolic diseases. Nat Rev Immunol 8:923–934

    Article  PubMed  CAS  Google Scholar 

  85. Donath MY, Storling J, Maedler K, Mandrup-Poulsen T (2003) Inflammatory mediators and islet beta-cell failure: a link between type 1 and type 2 diabetes. J Mol Med (Berl) 81:455–470

    Article  CAS  Google Scholar 

  86. Ehses JA, Ellingsgaard H, Boni-Schnetzler M, Donath MY (2009) Pancreatic islet inflammation in type 2 diabetes: from alpha and beta cell compensation to dysfunction. Arch Physiol Biochem 115:240–247

    Article  PubMed  CAS  Google Scholar 

  87. Donath MY, Schumann DM, Faulenbach M, Ellingsgaard H, Perren A, Ehses JA (2008) Islet inflammation in type 2 diabetes: from metabolic stress to therapy. Diabetes Care 31(Suppl 2):S161–S164

    Article  PubMed  CAS  Google Scholar 

  88. Masters SL, Dunne A, Subramanian SL, Hull RL, Tannahill GM, Sharp FA et al (2010) Activation of the NLRP3 inflammasome by islet amyloid polypeptide provides a mechanism for enhanced IL-1beta in type 2 diabetes. Nat Immunol 11:897–904

    Article  PubMed  CAS  Google Scholar 

  89. Weisberg SP, McCann D, Desai M, Rosenbaum M, Leibel RL, Ferrante AW Jr (2003) Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest 112:1796–1808

    PubMed  CAS  Google Scholar 

  90. Xu H, Barnes GT, Yang Q, Tan G, Yang D, Chou CJ et al (2003) Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J Clin Invest 112:1821–1830

    PubMed  CAS  Google Scholar 

  91. Wu H, Ghosh S, Perrard XD, Feng L, Garcia GE, Perrard JL et al (2007) T-cell accumulation and regulated on activation, normal T cell expressed and secreted upregulation in adipose tissue in obesity. Circulation 115:1029–1038

    Article  PubMed  CAS  Google Scholar 

  92. Breslin WL, Johnston CA, Strohacker K, Carpenter KC, Davidson TR, Moreno JP et al (2012) Obese Mexican American children have elevated MCP-1, TNF-alpha, monocyte concentration, and dyslipidemia. Pediatrics 129:e1180–e1186

    Article  PubMed  Google Scholar 

  93. Catalan V, Gomez-Ambrosi J, Ramirez B, Rotellar F, Pastor C, Silva C et al (2007) Proinflammatory cytokines in obesity: impact of type 2 diabetes mellitus and gastric bypass. Obes Surg 17:1464–1474

    Article  PubMed  Google Scholar 

  94. Abu El-Asrar AM, Struyf S, Kangave D, Geboes K, Van DJ (2006) Chemokines in proliferative diabetic retinopathy and proliferative vitreoretinopathy. Eur Cytokine Netw 17:155–165

    PubMed  CAS  Google Scholar 

  95. Harada C, Okumura A, Namekata K, Nakamura K, Mitamura Y, Ohguro H et al (2006) Role of monocyte chemotactic protein-1 and nuclear factor kappa B in the pathogenesis of proliferative diabetic retinopathy. Diabetes Res Clin Pract 74:249–256

    Article  PubMed  CAS  Google Scholar 

  96. Hernandez C, Segura RM, Fonollosa A, Carrasco E, Francisco G, Simo R (2005) Interleukin-8, monocyte chemoattractant protein-1 and IL-10 in the vitreous fluid of patients with proliferative diabetic retinopathy. Diabet Med 22:719–722

    Article  PubMed  CAS  Google Scholar 

  97. Capeans C, De Rojas MV, Lojo S, Salorio MS (1998) C-C chemokines in the vitreous of patients with proliferative vitreoretinopathy and proliferative diabetic retinopathy. Retina 18:546–550

    PubMed  CAS  Google Scholar 

  98. Kanda H, Tateya S, Tamori Y, Kotani K, Hiasa K, Kitazawa R et al (2006) MCP-1 contributes to macrophage infiltration into adipose tissue, insulin resistance, and hepatic steatosis in obesity. J Clin Invest 116:1494–1505

    Article  PubMed  CAS  Google Scholar 

  99. Ehses JA, Perren A, Eppler E, Ribaux P, Pospisilik JA, Maor-Cahn R et al (2007) Increased number of islet-associated macrophages in type 2 diabetes. Diabetes 56:2356–2370

    Article  PubMed  CAS  Google Scholar 

  100. Ehses JA, Lacraz G, Giroix MH, Schmidlin F, Coulaud J, Kassis N et al (2009) IL-1 antagonism reduces hyperglycemia and tissue inflammation in the type 2 diabetic GK rat. Proc Natl Acad Sci USA 106:13998–14003

    Article  PubMed  CAS  Google Scholar 

  101. Sarkar SA, Lee CE, Victorino F, Nguyen TT, Walters JA, Burrack A et al (2012) Expression and regulation of chemokines in murine and human type 1 diabetes. Diabetes 61:436–446

    Article  PubMed  CAS  Google Scholar 

  102. Serra AM, Waddell J, Manivannan A, Xu H, Cotter M, Forrester JV (2012) CD11b(+) Bone Marrow-Derived Monocytes Are the Major Leukocyte Subset Responsible for Retinal Capillary Leukostasis in Experimental Diabetes in Mouse and Express High Levels of CCR5 in the Circulation. Am J Pathol 181:719–727

    Article  PubMed  CAS  Google Scholar 

  103. Kitade H, Sawamoto K, Nagashimada M, Inoue H, Yamamoto Y, Sai Y et al (2012) CCR5 plays a critical role in obesity-induced adipose tissue inflammation and insulin resistance by regulating both macrophage recruitment and M1/M2 status. Diabetes 61:1680–1690

    Article  PubMed  CAS  Google Scholar 

  104. Yamada Y, Okubo Y, Shimada A, Oikawa Y, Yamada S, Narumi S et al (2012) Acceleration of diabetes development in CXC chemokine receptor 3 (CXCR3)-deficient NOD mice. Diabetologia 55:2238–2245

    Article  PubMed  CAS  Google Scholar 

  105. Panee J (2012) Monocyte Chemoattractant Protein 1 (MCP-1) in obesity and diabetes. Cytokine 60:1–12

    Article  PubMed  CAS  Google Scholar 

  106. Ghanim H, Korzeniewski K, Sia CL, Abuaysheh S, Lohano T, Chaudhuri A et al (2010) Suppressive effect of insulin infusion on chemokines and chemokine receptors. Diabetes Care 33:1103–1108

    Article  PubMed  CAS  Google Scholar 

  107. Ninichuk V, Clauss S, Kulkarni O, Schmid H, Segerer S, Radomska E et al (2008) Late onset of Ccl2 blockade with the Spiegelmer mNOX-E36-3’PEG prevents glomerulosclerosis and improves glomerular filtration rate in db/db mice. Am J Pathol 172:628–637

    Article  PubMed  CAS  Google Scholar 

  108. Sullivan TJ, Dairaghi DJ, Krasinski A, Miao Z, Wang Y, Zhao BN et al (2012) Characterization of CCX140-B, an orally bioavailable antagonist of the CCR2 chemokine receptor, for the treatment of type 2 diabetes and associated complications. J Pharmacol Exp Ther

    Google Scholar 

  109. Shah R, Hinkle CC, Ferguson JF, Mehta NN, Li M, Qu L et al (2011) Fractalkine is a novel human adipochemokine associated with type 2 diabetes. Diabetes 60:1512–1518

    Article  PubMed  CAS  Google Scholar 

  110. Charo IF, Ransohoff RM (2006) The many roles of chemokines and chemokine receptors in inflammation. N Engl J Med 354:610–21

    Article  PubMed  CAS  Google Scholar 

  111. Tuo J, Smith BC, Bojanowski CM, Meleth AD, Gery I, Csaky KG et al (2004) The involvement of sequence variation and expression of CX3CR1 in the pathogenesis of age-related macular degeneration. FASEB J 18:1297–1299

    PubMed  CAS  Google Scholar 

  112. Chan CC, Tuo J, Bojanowski CM, Csaky KG, Green WR (2005) Detection of CX3CR1 single nucleotide polymorphism and expression on archived eyes with age-related macular degeneration. Histol Histopathol 20:857–863

    PubMed  CAS  Google Scholar 

  113. Moatti D, Faure S, Fumeron F, Amara M, Seknadji P, McDermott DH et al (2001) Polymorphism in the fractalkine receptor CX3CR1 as a genetic risk factor for coronary artery disease. Blood 97:1925–1928

    Article  PubMed  CAS  Google Scholar 

  114. Nassar BA, Nanji AA, Ransom TP, Rockwood K, Kirkland SA, Macpherson K et al (2008) Role of the fractalkine receptor CX3CR1 polymorphisms V249I and T280M as risk factors for early-onset coronary artery disease in patients with no classic risk factors. Scand J Clin Lab Invest 68:286–291

    Article  PubMed  CAS  Google Scholar 

  115. McDermott DH, Halcox JP, Schenke WH, Waclawiw MA, Merrell MN, Epstein N et al (2001) Association between polymorphism in the chemokine receptor CX3CR1 and coronary vascular endothelial dysfunction and atherosclerosis. Circ Res 89:401–407

    Article  PubMed  CAS  Google Scholar 

  116. Niessner A, Marculescu R, Haschemi A, Endler G, Zorn G, Weyand CM et al (2005) Opposite effects of CX3CR1 receptor polymorphisms V249I and T280M on the development of acute coronary syndrome. A possible implication of fractalkine in inflammatory activation. Thromb Haemost 93:949–954

    PubMed  CAS  Google Scholar 

  117. Matzhold EM, Trummer O, Grunbacher G, Zulus B, Boehm BO, Marz W et al (2009) Association of polymorphisms in the chemokine receptor CX3CR1 gene with coronary artery disease. Cytokine 47:224–227

    Article  PubMed  CAS  Google Scholar 

  118. Horuk R (2009) Chemokine receptor antagonists: overcoming developmental hurdles. Nat Rev Drug Discov 8:23–33

    Article  PubMed  CAS  Google Scholar 

  119. Horuk R, Proudfoot AE (2009) Drug discovery targeting the chemokine system–where are we? Front Biosci (Elite Ed) 1:209–219

    Google Scholar 

Download references

Acknowledgements

We are indebted to Dr. Eroboghene Ubogu for his critical review of the manuscript and to Elizabeth Morris for assistance in preparing the manuscript. The Astrid E. Cardona Laboratory is funded by the US National Multiple Sclerosis Society Grant TA3021A1/T, The San Antonio Area Foundation grant 201135345, and the US National Institutes of Health grants SC1GM095426 and R01NS078501.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this protocol

Cite this protocol

Cardona, S.M., Garcia, J.A., Cardona, A.E. (2013). The Fine Balance of Chemokines During Disease: Trafficking, Inflammation, and Homeostasis. In: Cardona, A., Ubogu, E. (eds) Chemokines. Methods in Molecular Biology, vol 1013. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-426-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-426-5_1

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-425-8

  • Online ISBN: 978-1-62703-426-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics