Skip to main content

Mass Measurement of Polyphosphoinositides by Thin-Layer and Gas Chromatography

  • Protocol
  • First Online:
Plant Lipid Signaling Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1009))

Abstract

Phosphoinositides derive from the phospholipid, phosphatidylinositol (PtdIns), by phosphorylation of the inositol ring in the lipid head group. The determination of phosphoinositide species is a particular challenge, because the structurally similar inositolphosphate-head groups must be analyzed as well as the lipid-associated fatty acids. The method presented in this chapter consists of two steps: First phosphoinositides are separated by thin-layer chromatography (TLC) according to their characteristic head groups and the individual lipids are isolated. Second, the fatty acids associated with each isolated lipid are analyzed using a gas-chromatograph (GC). The combination of these two classical methods for lipid analysis, TLC and GC, provides a cost-efficient and reliable alternative to lipidomics approaches requiring more extensive instrumentation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Palmer S, Hawkins PT, Michell RH, Kirk CJ (1986) The labelling of polyphosphoinositides with [32P]Pi and the accumulation of inositol phosphates in vasopressin-stimulated hepatocytes. Biochem J 238:491–499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Heilmann I (2009) Using genetic tools to understand plant phosphoinositide signalling. Trends Plant Sci 14:171–179

    Article  CAS  PubMed  Google Scholar 

  3. König S, Ischebeck T, Lerche J, Stenzel I, Heilmann I (2008) Salt stress-induced association of phosphatidylinositol-4,5-bisphosphate with clathrin-coated vesicles in plants. Biochem J 415:387–399

    Article  PubMed  Google Scholar 

  4. König S, Mosblech A, Heilmann I (2007) Stress-inducible and constitutive phosphoinositide pools have distinct fatty acid patterns in Arabidopsis thaliana. FASEB J 21:1958–1967

    Article  PubMed  Google Scholar 

  5. Saavedra L, Balbi V, Lerche J, Mikami K, Heilmann I, Sommarin M (2011) PIPKs are essential for rhizoid elongation and caulonemal cell development in the moss Physcomitrella patens. Plant J 67:635–647

    Article  CAS  PubMed  Google Scholar 

  6. König S, Hoffmann M, Mosblech A, Heilmann I (2008) Determination of content and fatty acid composition of unlabeled phosphoinositide species by thin layer chromatography and gas chromatography. Anal Biochem 278:197–201

    Article  Google Scholar 

  7. Goebbels S, Oltrogge JH, Kemper R, Heilmann I, Bormuth I, Wolfer S, Wichert SP, Mobius W, Liu X, Lappe-Siefke C, Rossner MJ, Groszer M, Suter U, Frahm J, Boretius S, Nave KA (2010) Elevated phosphatidylinositol 3,4,5-trisphosphate in glia triggers cell-autonomous membrane wrapping and myelination. J Neurosci 30:8953–8964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Walsh JP, Caldwell KK, Majerus PW (1991) Formation of phosphatidylinositol 3-phosphate by isomerization from phosphatidylinositol 4-phosphate. Proc Natl Acad Sci USA 88:9184–9187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Perera IY, Davis AJ, Galanopoulou D, Im YJ, Boss WF (2005) Characterization and comparative analysis of Arabidopsis phosphatidylinositol phosphate 5-kinase 10 reveals differences in Arabidopsis and human phosphatidylinositol phosphate kinases. FEBS Lett 579:3427–3432

    Article  CAS  PubMed  Google Scholar 

  10. Cho MH, Chen Q, Okpodu CM, Boss WF (1992) Separation and quantification of [3H]inositol phospholipids using thin-layer-chromatography and a computerized 3H imaging scanner. LC-GC 10:464–468

    CAS  Google Scholar 

  11. Hornung E, Korfei M, Pernstich C, Struss A, Kindl H, Fulda M, Feussner I (2005) Specific formation of arachidonic acid and eicosapentaenoic acid by a front-end Delta5-desaturase from Phytophthora megasperma. Biochim Biophys Acta 1686:181–189

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Heilmann, M., Heilmann, I. (2013). Mass Measurement of Polyphosphoinositides by Thin-Layer and Gas Chromatography. In: Munnik, T., Heilmann, I. (eds) Plant Lipid Signaling Protocols. Methods in Molecular Biology, vol 1009. Humana, Totowa, NJ. https://doi.org/10.1007/978-1-62703-401-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-401-2_3

  • Published:

  • Publisher Name: Humana, Totowa, NJ

  • Print ISBN: 978-1-62703-400-5

  • Online ISBN: 978-1-62703-401-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics