Skip to main content

Assaying Different Types of Plant Phospholipase D Activities In Vitro

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1009))

Abstract

Over the past decade, tremendous progress has been made toward understanding the physiological functions of individual members of the diverse phospholipase D (PLD) family of enzymes in plants. For instance, the involvement of plant PLD members has been shown or suggested in a wide variety of the cellular and physiological processes such as regulating stomatal opening and closure; signaling plant responses to drought, salt, and other abiotic and biotic stresses; organizing microtubule and actin cytoskeletal structures; promoting pollen tube growth; cycling phosphorus; signaling nitrogen availability; regulating N-acylethanolamine stress signaling; and remodeling membrane phospholipids in plant responses to phosphate deprivation and during and after freezing. There are at least a dozen PLDs in Arabidopsis that can be separated into six classes, phospholipases Dα, Dβ, Dγ, Dδ, Dε, and Dζ, based on their molecular and enzymatic characteristics. Several of the classes have distinguishing enzymatic properties that can be used to discriminate among the various classes. Here we provide four variations of in vitro PLD activity assays using choline-labeled phosphatidylcholine to distinguish, to the extent possible, among the different PLD classes.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Qin C, Wang X (2002) The Arabidopsis phospholipase D family. Characterization of a calcium-independent and phosphatidylcholine-selective PLDζ1 with distinct regulatory domains. Plant Physiol 128:1057–1068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Liu Q, Zhang C, Yang Y et al (2010) Genome-wide and molecular evolution analyses of the phospholipase D gene family in poplar and grape. BMC Plant Biol 10:117

    Article  PubMed  PubMed Central  Google Scholar 

  3. Li G, Lin F, Xue H-W (2007) Genome-wide analysis of the phospholipase D family in Oryza sativa and functional characterization of PLDβ1 in seed germination. Cell Res 17:881–894

    Article  CAS  PubMed  Google Scholar 

  4. Oblozinsky M, Bezakova L, Mansfeld J et al (2011) The transphosphatidylation potential of a membrane-bound phospholipase D from poppy seedlings. Phytochemistry 72:160–165

    Article  CAS  PubMed  Google Scholar 

  5. Sang Y, Zheng S, Li W et al (2001) Regulation of plant water loss by manipulating the expression of phospholipase Dα. Plant J 28:135–144

    Article  CAS  PubMed  Google Scholar 

  6. Hong Y, Pan X, Welti R et al (2008) Phospholipase Dα3 is involved in the hyperosmotic response in Arabidopsis. Plant Cell 20:803–816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Li W, Wang R, Li M et al (2008) Differential degradation of extraplastidic and plastidic lipids during freezing and post-freezing recovery in Arabidopsis thaliana. J Biol Chem 283:461–468

    Article  CAS  PubMed  Google Scholar 

  8. Laxalt AM, ter Riet B, Verdonk JC et al (2001) Characterization of five tomato phospholipase D cDNAs: rapid and specific expression of LePLDβ1 on elicitation with xylanase. Plant J 26:237–247

    Article  CAS  PubMed  Google Scholar 

  9. Zabela M, Fernandez-Delmond I, Niittyla T et al (2002) Differential expression of genes encoding Arabidopsis phospholipases after challenge with virulent or avirulent Pseudomonas isolates. Mol Plant Microbe Interact 15:808–816

    Article  Google Scholar 

  10. Pappan K, Wang X (1999) Plant phospholipase Dα is an acidic phospholipase active at near-physiological Ca2+ concentrations. Arch Biochem Biophys 368:347–353

    Article  CAS  PubMed  Google Scholar 

  11. Pappan K, Austin-Brown S, Chapman K et al (1998) Substrate selectivities and lipid modulation of plant phospholipase Dα, -β, and -γ. Arch Biochem Biophys 353:131–140

    Article  CAS  PubMed  Google Scholar 

  12. Austin-Brown SL, Chapman KD (2002) Inhibition of phospholipase Dα by N-acylethanolamines. Plant Physiol 129:1892–1898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Qin C, Li M, Qin W et al (2006) Expression and characterization of Arabidopsis phospholipase Dγ2. Biochim Biophys Acta 1761:1450–1458

    Article  CAS  PubMed  Google Scholar 

  14. Pappan K, Zheng S, Wang X (1997) Identification of a novel plant phospholipase D that requires polyphosphoinositides and submicromolar calcium for activity in Arabidopsis. J Biol Chem 272:7048–7054

    Article  CAS  PubMed  Google Scholar 

  15. Pappan K, Qin W, Dyer JH et al (1997) Molecular cloning and functional analysis of polyphosphoinositide-dependent phospholipase D, PLDβ, from Arabidopsis. J Biol Chem 272:7055–7061

    Article  CAS  PubMed  Google Scholar 

  16. Qin W, Pappan K, Wang X (1997) Molecular heterogeneity of phospholipase D (PLD). Cloning of PLDγ and regulation of plant PLDγ, -β, and -α by polyphosphoinositides and calcium. J Biol Chem 272:28267–28273

    Article  CAS  PubMed  Google Scholar 

  17. Li W, Li M, Zhang W et al (2004) The plasma membrane-bound phospholipase Dδ enhances freezing tolerance in Arabidopsis thaliana. Nat Biotechnol 22:427–433

    Article  PubMed  Google Scholar 

  18. Chen Q-F, Xiao S, Chye M-L (2008) Overexpression of the Arabidopsis 10-kilodalton acyl-coenzyme A-binding protein ACBP6 enhances freezing tolerance. Plant Physiol 148:304–315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gardiner JC, Harper JDI, Weerakoon ND et al (2001) A 90-kD phospholipase D from tobacco binds to microtubules and the plasma membrane. Plant Cell 13:2143–2158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Katagiri T, Takahashi S, Shinozaki K (2001) Involvement of a novel Arabidopsis phospholipase D, AtPLDδ, in dehydration-inducible accumulation of phosphatidic acid in stress signaling. Plant J 26:595–605

    Article  CAS  PubMed  Google Scholar 

  21. Zhang W, Wang C, Qin C et al (2003) The oleate-stimulated phospholipase D, PLDδ, and phosphatidic acid decrease H2O2-induced cell death in Arabidopsis. Plant Cell 15:2285–2295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wang C, Wang X (2001) A novel phospholipase D of Arabidopsis that is activated by oleic acid and associated with the plasma membrane. Plant Physiol 127:1102–1112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Qin C, Wang C, Wang X (2002) Kinetic analysis of Arabidopsis phospholipase Dδ. Substrate preference and mechanism of activation by Ca2+ and phosphatidylinositol 4,5-bisphosphate. J Biol Chem 277:49685–49690

    Article  CAS  PubMed  Google Scholar 

  24. Hong Y, Devaiah SP, Bahn SC et al (2009) Phospholipase Dε and phosphatidic acid enhance Arabidopsis nitrogen signaling and growth. Plant J 58:376–387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Li M, Welti R, Wang X (2006) Quantitative profiling of Arabidopsis polar glycerolipids in response to phosphorus starvation. Roles of phospholipases Dζ1 and Dζ2 in phosphatidylcholine hydrolysis and digalactosyldiacylglycerol accumulation in phosphorus-starved plants. Plant Physiol 142:750–761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Cruz-Ramirez A, Oropeza-Aburto A, Razo-Hernandez F et al (2006) Phospholipase Dζ2 plays an important role in extraplastidic galactolipid biosynthesis and phosphate recycling in Arabidopsis roots. Proc Natl Acad Sci USA 103:6765–6770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Li G, Xue HW (2007) Arabidopsis PLDzeta2 regulates vesicle trafficking and is required for auxin response. Plant Cell 19:281–295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Fan L, Zheng S, Cui D, Wang X (1999) Subcellular distribution and tissue expression of phospholipase Dα, Dβ, and Dγ in Arabidopsis. Plant Physiol 119:1371–1378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ryu SB, Wang X (1996) Activation of phospholipase D and the possible mechanism of activation in wound-induced lipid hydrolysis in castor bean leaves. Biochim Biophys Acta 1303:243–250

    Article  PubMed  Google Scholar 

  30. Wang X, Dyer JH, Zheng L (1993) Purification and immunological analysis of phospholipase D from castor bean endosperm. Arch Biochem Biophys 306:486–494

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank all members and collaborators, past and present, of the Wang lab. This work was supported in part by grants from the National Science Foundation (IOS-0818740) and the US Department of Agriculture (2007-35318-18393).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Pappan, K.L., Wang, X. (2013). Assaying Different Types of Plant Phospholipase D Activities In Vitro. In: Munnik, T., Heilmann, I. (eds) Plant Lipid Signaling Protocols. Methods in Molecular Biology, vol 1009. Humana, Totowa, NJ. https://doi.org/10.1007/978-1-62703-401-2_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-401-2_19

  • Published:

  • Publisher Name: Humana, Totowa, NJ

  • Print ISBN: 978-1-62703-400-5

  • Online ISBN: 978-1-62703-401-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics