Skip to main content

Monitoring Protein–Ligand Interactions by Time-Resolved FTIR Difference Spectroscopy

  • Protocol
  • First Online:
Protein-Ligand Interactions

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1008))

Abstract

Time-resolved FTIR difference spectroscopy is a valuable tool to monitor the dynamics and exact molecular details of protein–ligand interactions. FTIR difference spectroscopy selects, out of the background absorbance of the whole sample, the absorbance bands of the protein groups and of the ligands that are involved in the protein reaction. The absorbance changes can be monitored with time-resolutions down to nanoseconds and followed for time periods ranging over nine orders of magnitude even in membrane proteins with a size of 100,000 Da. Here, we discuss the various experimental setups. The rapid scan technique allows a time resolution in the millisecond regime, whereas the step scan technique allows nanosecond time resolution. We show appropriate sample cells and how to trigger a reaction within these cells. The kinetic analysis of the data is discussed. A crucial step in the data analysis is the reliable assignment of bands to chemical groups of the protein and the ligand. This is done either by site directed mutagenesis, where the absorbance bands of the exchanged amino acids disappear or by isotopically labeling, where the band of the labelled group is frequency shifted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gerwert K (1993) Molecular reaction mechanisms of proteins as monitored by time-resolved FTIR spectroscopy. Curr Opin Struct Biol 3:769–773

    Article  CAS  Google Scholar 

  2. Gerwert K, Hess B, Soppa J, Oesterhelt D (1989) Role of aspartate-96 in proton translocation by bacteriorhodopsin. Proc Natl Acad Sci U S A 86:4943–4947

    Article  PubMed  CAS  Google Scholar 

  3. Gerwert K, Siebert F (1986) Evidence for light-induced 13-cis, 14-s-cis, isomerization in bacteriorhodopsin obtained by FTIR difference spectroscopy using isotopically labelled retinals. EMBO J 5:805–811

    PubMed  CAS  Google Scholar 

  4. Gerwert K, Souvignier G, Hess B (1990) Simultaneous monitoring of light-induced changes in protein side-group protonation, chromophore isomerization, and backbone motion of bacteriorhodopsin by time-resolved Fourier-transform infrared spectroscopy. Proc Natl Acad Sci U S A 87:9774–9778

    Article  PubMed  CAS  Google Scholar 

  5. Garczarek F, Gerwert K (2006) Functional waters in intraprotein proton transfer monitored by FTIR difference spectroscopy. Nature 439:109–112

    Article  PubMed  CAS  Google Scholar 

  6. Wolf S, Freier E, Potschies M, Hofmann E, Gerwert K (2010) Directional proton transfer in membrane proteins achieved through protonated protein-bound water molecules: a proton diode. Angew Chem Int Ed 49:6889–6893

    Article  CAS  Google Scholar 

  7. Brudler R, Rammelsberg R, Woo TT, Getzoff ED, Gerwert K (2001) Structure of the I1 early intermediate of photoactive yellow protein by FTIR spectroscopy. Nat Struct Biol 8:265–270

    Article  PubMed  CAS  Google Scholar 

  8. Remy A, Gerwert K (2003) Coupling of light-induced electron transfer to proton uptake in photosynthesis. Nat Struct Biol 10:637–644

    Article  PubMed  CAS  Google Scholar 

  9. Onidas D, Stachnik JM, Brucker S, Krätzig S, Gerwert K (2010) Coupling of light-induced electron transfer to proton-uptake in photosynthesis. Eur J Cell Biol 89:983–989

    Article  PubMed  CAS  Google Scholar 

  10. Lübben M, Gerwert K (1996) Redox FTIR difference spectroscopy using caged electrons reveals contributions of carboxyl groups to the catalytic mechanism of heme-copper oxidases. FEBS Lett 397:303–307

    Article  PubMed  Google Scholar 

  11. Kötting C, Kallenbach A, Suveyzdis Y, Eichholz C, Gerwert K (2007) Surface change of Ras enabling effector binding monitored in real time at atomic resolution. Chembiochem 8:781–787

    Article  PubMed  Google Scholar 

  12. Völlmecke C, Kötting C, Gerwert K, Lübben M (2009) Spectroscopic investigation of the reaction mechanism of CopB-B, the catalytic fragment from an archaeal thermophilic ATP-driven heavy metal transporter. FEBS J 276:6172–6186

    Article  PubMed  Google Scholar 

  13. Kötting C, Gerwert K (2004) Time-resolved FTIR studies provide activation free energy, activation enthalpy and activation entropy for GTPase reactions. Chem Phys 307:227–232

    Article  Google Scholar 

  14. Kötting C, Blessenohl M, Suveyzdis Y, Goody R, Wittinghofer A, Gerwert K (2006) A phosphoryl transfer intermediate in the GTPase reaction of Ras in complex with its GTPase-activating protein. Proc Natl Acad Sci U S A 103:13911–13916

    Article  PubMed  Google Scholar 

  15. Kötting C, Kallenbach A, Suveyzdis Y, Wittinghofer A, Gerwert K (2008) The GAP arginine finger movement into the catalytic site of Ras increases the activation entropy. Proc Natl Acad Sci U S A 105:6260–6265

    Article  PubMed  Google Scholar 

  16. Kötting C, Suveyzdis Y, Bojja RS, Metzler-Nolte N, Gerwert K (2010) Label-free screening of drug-protein interactions by time-resolved Fourier transform infrared spectroscopic assays exemplified by Ras interactions. Appl Spectrosc 64:967–972

    Article  PubMed  Google Scholar 

  17. Fringeli UP, Baurecht D, Siam M, Reiter G, Schwarzott M, Burgi T, Bruesch P (2002) ATR spectroscopy of thin films. Handbook of Thin Film Materials 2:191–229

    CAS  Google Scholar 

  18. Harrick NJ (1987) Nanosampling via internal reflection spectroscopy. Appl Spectrosc 41:1–2

    Article  CAS  Google Scholar 

  19. Ataka K, Heberle J (2007) Biochemical applications of surface-enhanced infrared absorption spectroscopy. Anal Bioanal Chem 388:47–54

    Article  PubMed  CAS  Google Scholar 

  20. Ataka K, Kottke T, Heberle J (2010) Thinner, smaller, faster: IR techniques to probe the functionality of biological and biomimetic systems. Angew Chem Int Ed 49:5416–5424

    Article  CAS  Google Scholar 

  21. Osawa M (2001) Surface-enhanced infrared absorption. Top Appl Phys 81:163–187

    Article  CAS  Google Scholar 

  22. Elfrink K, Ollesch J, Stohr J, Willbold D, Riesner D, Gerwert K (2008) Structural changes of membrane-anchored native PrPC. Proc Natl Acad Sci U S A 105:10815–10819

    Article  PubMed  CAS  Google Scholar 

  23. Güldenhaupt J, Adigüzel Y, Kuhlmann J, Waldmann H, Kötting C, Gerwert K (2008) Secondary structure of lipidated Ras bound to a lipid bilayer. FEBS J 275:5910–5918

    Article  PubMed  Google Scholar 

  24. Goormaghtigh E, Gasper R, Benard A, Goldsztein A, Raussens V (2009) Protein secondary structure content in solution, films and tissues: redundancy and complementarity of the information content in circular dichroism, transmission and ATR FTIR spectra. Biochim Biophys Acta 1794:1332–1343

    Article  PubMed  CAS  Google Scholar 

  25. Kötting C, Güldenhaupt J, Gerwert K (2012) Time-resolved FTIR spectroscopy for monitoring protein dynamics exemplified by functional studies of Ras protein bound to a lipid bilayer. Chem Phys 396:72–83

    Article  Google Scholar 

  26. Gerwert K (1988) Intramolecular protein dynamics study with time-resolved Fourier-transform IR-difference spectroscopy. Berichte der Bunsen-Gesellschaft 92:978–982

    CAS  Google Scholar 

  27. Pelliccioli AP, Wirz J (2002) Photoremovable protecting groups: reaction mechanisms and applications. Photochem Photobiol Sci 1:441–458

    Article  PubMed  Google Scholar 

  28. McCray JA, Trentham DR (1989) Properties and uses of photoreactive caged compounds. Annu Rev Biophys Biophys Chem 18:239–270

    Article  PubMed  CAS  Google Scholar 

  29. Cepus V, Ulbrich C, Allin C, Troullier A, Gerwert K (1998) Fourier transform infrared photolysis studies of caged compounds. Methods Enzymol 291:223–245

    Article  PubMed  CAS  Google Scholar 

  30. Cheng Q, Steinmetz MG, Jayaraman V (2002) Photolysis of gamma-(alpha-carboxy-2-nitrobenzyl)-l-glutamic acid investigated in the microsecond time scale by time-resolved FTIR. J Am Chem Soc 124:7676–7677

    Article  PubMed  CAS  Google Scholar 

  31. Barth A, Corrie JET (2002) Characterization of a new caged proton capable of inducing large pH jumps. Biophys J 83:2864–2871

    Article  PubMed  CAS  Google Scholar 

  32. Walker J, Reid GP, McCray JA, Trentham DR (1988) Photolabile 1-(2-nitrophenyl)ethyl phosphate esters of adenine nucleotide analogs. Synthesis and mechanism of photolysis. J Am Chem Soc 110:7170–7177

    Article  CAS  Google Scholar 

  33. Park C-H, Givens RS (1997) New photoactivated protecting groups. 6. p-Hydroxyphenacyl: a phototrigger for chemical and biochemical probes. J Am Chem Soc 119:2453–2463

    Article  CAS  Google Scholar 

  34. Corrie JET, Trentham DR (1993) Caged nucleotides and neurotransmitters. Bioorg Photochem 2:243–305, 1plate

    CAS  Google Scholar 

  35. Kauffmann E, Darnton NC, Austin RH, Batt C, Gerwert K (2001) Lifetimes of intermediates in the beta-sheet to alpha-helix transition of beta-lactoglobulin by using a diffusional IR mixer. Proc Natl Acad Sci U S A 98:6646–6649

    Article  PubMed  CAS  Google Scholar 

  36. Palmer RA, Chao JL, Dittmar RM, Gregoriou VG, Plunkett SE (1993) Investigation of time-dependent phenomena by use of step-scan Ft-Ir. Appl Spectrosc 47:1297–1310

    Article  CAS  Google Scholar 

  37. Palmer RA, Manning CJ, Chao JL, Noda I, Dowrey AE, Marcott C (1991) Application of step-scan interferometry to two-dimensional Fourier transform infrared (2D FT-IR) correlation spectroscopy. Appl Spectrosc 45:12–17

    Article  CAS  Google Scholar 

  38. Weidlich O, Siebert F (1993) Time-resolved step-scan Ft-Ir investigations of the transition from Kl to L in the bacteriorhodopsin photocycle—identification of chromophore twists by assigning hydrogen-out-of-plane (hoop) bending vibrations. Appl Spectrosc 47:1394–1400

    Article  CAS  Google Scholar 

  39. Uhmann W, Becker A, Taran C, Siebert F (1991) Time-resolved FT-IR absorption spectroscopy using a step-scan interferometer. Appl Spectrosc 45:390–397

    Article  CAS  Google Scholar 

  40. Hessling B, Herbst J, Rammelsberg R, Gerwert K (1997) Fourier transform infrared double-flash experiments resolve bacteriorhodopsin’s M-1 to M-2 transition. Biophys J 73:2071–2080

    Article  PubMed  CAS  Google Scholar 

  41. Rammelsberg R, Huhn G, Lubben M, Gerwert K (1998) Bacteriorhodopsin’s intramolecular proton-release pathway consists of a hydrogen-bonded network. Biochemistry 37:5001–5009

    Article  PubMed  CAS  Google Scholar 

  42. Schleeger M, Wagner C, Vellekoop MJ, Lendl B, Heberle J (2009) Time-resolved flow-flash FT-IR difference spectroscopy: the kinetics of CO photodissociation from myoglobin revisited. Anal Bioanal Chem 394:1869–1877

    Article  PubMed  CAS  Google Scholar 

  43. Hessling B, Souvignier G, Gerwert K (1993) A model-independent approach to assigning bacteriorhodopsin’s intramolecular reactions to photocycle intermediates. Biophys J 65:1929–1941

    Article  PubMed  CAS  Google Scholar 

  44. Cantor CR, Schimmel PR (1980) Biophysical chemistry, Pt. 1: the conformation of biological macromolecules. W. H. Freeman, New York

    Google Scholar 

  45. Fersht A (1983) Enzymes: structures and reaction mechanisms. W. H. Freeman, New York

    Google Scholar 

  46. Steinfeld JI, Francisco JS, Hase WL (1999) Chemical kinetics dynamics, 2nd edn. Prentice Hall, Upper Saddle River, NJ

    Google Scholar 

  47. Blanchet L, Ruckebusch C, Mezzetti A, Huvenne JP, de Juan A (2009) Monitoring and interpretation of photoinduced biochemical processes by rapid-scan FTIR difference spectroscopy and hybrid hard and soft modeling. J Phys Chem B 113:6031–6040

    Article  PubMed  CAS  Google Scholar 

  48. Lugtenburg J, Mathies RA, Griffin RG, Herzfeld J (1988) Structure and function of rhodopsins from solid state NMR and resonance Raman spectroscopy of isotopic retinal derivatives. Trends Biochem Sci 13:388–393

    Article  PubMed  CAS  Google Scholar 

  49. Allin C, Ahmadian MR, Wittinghofer A, Gerwert K (2001) Monitoring the GAP catalyzed H-Ras GTPase reaction at atomic resolution in real time. Proc Natl Acad Sci U S A 98:7754–7759

    Article  PubMed  CAS  Google Scholar 

  50. Allin C, Gerwert K (2001) Ras catalyzes GTP hydrolysis by shifting negative charges from gamma- to beta-phosphate as revealed by time-resolved FTIR difference spectroscopy. Biochemistry 40:3037–3046

    Article  PubMed  CAS  Google Scholar 

  51. Engelhard M, Gerwert K, Hess B, Siebert F (1985) Light-driven protonation changes of internal aspartic acids of bacteriorhodopsin: an investigation of static and time-resolved infrared difference spectroscopy using [4-13C]aspartic acid labeled purple membrane. Biochemistry 24:400–407

    Article  PubMed  CAS  Google Scholar 

  52. Warscheid B, Brucker S, Kallenbach A, Meyer HE, Gerwert K, Kötting C (2008) Systematic approach to group-specific isotopic labeling of proteins for vibrational spectroscopy. Vib Spectrosc 48:28–36

    Article  CAS  Google Scholar 

  53. Stryer L (1995) Biochemistry, 4th edn. W.H. Freeman, New York

    Google Scholar 

  54. Fischer WB, Sonar S, Marti T, Khorana HG, Rothschild KJ (1994) Detection of a water molecule in the active-site of bacteriorhodopsin - hydrogen-bonding changes during the primary photoreaction. Biochemistry 33:12757–12762

    Article  PubMed  CAS  Google Scholar 

  55. Becker CFW, Hunter CL, Seidel R, Kent SBH, Goody RS, Engelhard M (2003) Total chemical synthesis of a functional interacting protein pair: the protooncogene H-Ras and the Ras-binding domain of its effector c-Raf1. Proc Natl Acad Sci U S A 100:5075–5080

    Article  PubMed  CAS  Google Scholar 

  56. Tremmel S, Beyermann M, Oschkinat H, Bienert M, Naumann D, Fabian H (2005) C-13-labeled tyrosine residues as local IR probes for monitoring conformational changes in peptides and proteins. Angew Chem Int Ed 44:4631–4635

    Article  CAS  Google Scholar 

  57. Ye SX, Zaitseva E, Caltabiano G, Schertler GFX, Sakmar TP, Deupi X, Vogel R (2010) Tracking G-protein-coupled receptor activation using genetically encoded infrared probes. Nature 464:1386

    Article  PubMed  CAS  Google Scholar 

  58. Kolano C (2003). PhD thesis, Ruhr-Universität Bochum

    Google Scholar 

  59. Griffiths PR, de Haseth JA (2007) Fourier transform infrared spectrometry, 2nd edn. Wiley, Hoboken, NJ

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this protocol

Cite this protocol

Kötting, C., Gerwert, K. (2013). Monitoring Protein–Ligand Interactions by Time-Resolved FTIR Difference Spectroscopy. In: Williams, M., Daviter, T. (eds) Protein-Ligand Interactions. Methods in Molecular Biology, vol 1008. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-398-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-398-5_11

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-397-8

  • Online ISBN: 978-1-62703-398-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics