Skip to main content

Informativeness of Microsatellite Markers

  • Protocol
  • First Online:
Microsatellites

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1006))

Abstract

Simple sequence repeats (SSR) are extensively used as genetic markers for studies of diversity, genetic mapping, and cultivar discrimination. The informativeness of a given SSR locus or a loci group depends on the number of alleles, their frequency distribution, as well as the kind of application. Here I describe several methods for calculating marker informativeness, all of them suitable for SSR polymorphisms, proposed by several authors and synthesized in an Information Theory framework. Additionally, free access software resources are described as well as their application through worked examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shannon CE (1948) A mathematical theory of communication. Bell Syst Tech J 27(379–423):623–656

    Google Scholar 

  2. Nothnagel M, Fürst R, Rhode K (2002) Entropy as a measure for linkage disequilibrium over multilocus haplotype blocks. Hum Hered 54:186–198

    Article  PubMed  CAS  Google Scholar 

  3. Rosenberg NA, Li LM, Ward R et al (2003) Informativeness of genetic markers for inference of ancestry. Am J Hum Genet 73:1402–1422

    Article  PubMed  CAS  Google Scholar 

  4. Hampe J, Schreiber S, Krawczak M (2003) Entropy-based SNP selection for genetic association studies. Hum Genet 114:36–43

    Article  PubMed  CAS  Google Scholar 

  5. Butler JM, Bishop DT, Barrett JH (2005) Strategies for selecting subsets of single-nucleotide polymorphisms to genotype in association studies. BMC Genet. doi:10.1186/1471-2156-6-S1-S72

  6. Zhao J, Boerwinkle E, Xiong M (2005) An entropy-based statistic for genomewide association studies. Am J Hum Genet 77:27–40

    Article  PubMed  CAS  Google Scholar 

  7. Reyes-Valdés MH, Williams CG (2005) An entropy-based measure of founder informativeness. Genet Res 85:81–88

    Article  PubMed  Google Scholar 

  8. Martínez O, Reyes-Valdés MH (2008) Defining diversity, specialization, and gene specificity in transcriptomes through information theory. Proc Natl Acad Sci USA 105:9709–9714

    Article  PubMed  Google Scholar 

  9. Botstein D, White RL, Skolnick M et al (1980) Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet 32:314–331

    PubMed  CAS  Google Scholar 

  10. Hildebrand CE, Torney DC, Wagner RP (1992) Informativeness of polymorphic DNA markers. Los Alamos Sci 20:100–102

    CAS  Google Scholar 

  11. Anderson JA, Churchill GA, Autrique JE et al (1993) Optimizing parental selection for genetic linkage maps. Genome 36:181–186

    Article  PubMed  CAS  Google Scholar 

  12. Weir BS (1990) Genetic data analysis. Methods for discrete genetic data. Sinauer Associates, Inc., Sunderland, MA

    Google Scholar 

  13. Simpson EH (1949) Measurement of diversity. Nature 163:688

    Article  Google Scholar 

  14. Jost L, Baños T (2006) Entropy and diversity. Oikos 113:373–375

    Article  Google Scholar 

  15. Tessier C, David J, This P et al (1999) Optimization of the choice of molecular markers for varietal identification in Vitis vinifera L. Theor Appl Genet 98:171–177

    Article  CAS  Google Scholar 

  16. R Development Core Team (2012) R: a language and environment for statistical computing. R Foundation for Statistical Computing. http://www.R-project.org

  17. Broman KW, Wu H, Sen S et al (2003) R/qtl: QTL mapping in experimental crosses. Bioinformatics 19:889–890

    Article  PubMed  CAS  Google Scholar 

  18. Rosenberg N (2006) Infocalc—a program for calculating marker informativeness statistics. Version 1.1. http://www.stanford.edu/group/rosenberglab/infocalc.html

  19. Kemp S (2002) PIC calculator. http://www.stanford.edu/group/rosenberglab/infocalc.html

  20. Broman KW, Sen S (2009) A guide to QTL mapping with R/qtl. Springer, New York

    Book  Google Scholar 

Download references

Acknowledgements

I am thankful to Stella Kantarzi, who provided soybean SSR data to be used in one of the examples; to Noah Rosenberg, who reviewed the material related to his developments in marker informativeness; and to José Reyes, who checked my R scripts.

The R functions used in this book chapter can be accessed through the following link: http://www.uaaan.mx/∼mhreyes/Functions­ChapterSSR.html.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Reyes-Valdés, M.H. (2013). Informativeness of Microsatellite Markers. In: Kantartzi, S. (eds) Microsatellites. Methods in Molecular Biology, vol 1006. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-389-3_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-389-3_18

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-388-6

  • Online ISBN: 978-1-62703-389-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics