Advertisement

Multidimensional Protein Identification Technology for Direct-Tissue Proteomics of Heart

  • Dario Di Silvestre
  • Francesca Brambilla
  • Pier Luigi Mauri
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1005)

Abstract

Multidimensional protein identification technology (MudPIT) is an invaluable approach to identify proteins at large-scale level. Here, we describe a procedure of investigation to functional characterize the proteomic profile of complex samples such as those from cardiac tissues. In particular, we focus on the main steps concerning sample preparation, MudPIT analysis, tandem mass spectra processing, and biomarker discovery using label-free approaches. Finally, we report a data-derived systems biology approach to identify groups of proteins of over-, under-, and normal expression.

Key words

Proteomics MudPIT Profiling Biomarker discovery Systems biology Cytoscape Heart 

Notes

Acknowledgments

This work was supported by CARIPLO Foundation (2008.2504, 2007.5312 and project - Proteomic platform, Operational Network for Biomedicine Excellence in Lombardy). The authors thank Marta G. Bitonti for MAProMA software.

References

  1. 1.
    Ly L, Wasinger VC (2011) Protein and peptide fractionation, enrichment and depletion: tools for the complex proteome. Proteomics 11:513–534PubMedCrossRefGoogle Scholar
  2. 2.
    Nilsson T, Mann M, Aebersold R et al (2010) Mass spectrometry in high-throughput proteomics: ready for the big time. Nat Methods 7:681PubMedCrossRefGoogle Scholar
  3. 3.
    Horgan GW (2007) Sample size and replication in 2D gel electrophoresis studies. J Proteome Res 6:2884–2887PubMedCrossRefGoogle Scholar
  4. 4.
    Yates JR, Ruse CI, Nakorchevsky A (2009) Proteomics by mass spectrometry: Approaches, advances, and applications. Annu Rev Biomed Eng 11:49–79PubMedCrossRefGoogle Scholar
  5. 5.
    Braun RJ, Kinkl N, Beer M et al (2007) Two-dimensional electrophoresis of membrane proteins. Anal Bioanal Chem 389:1033–1045PubMedCrossRefGoogle Scholar
  6. 6.
    Mauri PL, Scigelova M (2009) Multidimensional protein identification technology for clinical proteomic analysis. Clin Chem Lab Med 47:636–646PubMedCrossRefGoogle Scholar
  7. 7.
    Eng JK, McCormack AL, Yates JR (1994) An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. J Am Soc Mass Spectrom 5:976–989CrossRefGoogle Scholar
  8. 8.
    Comunian C, Rusconi F, De Palma A et al (2011) A comparative MudPIT analysis identifies different expression profiles in heart compartments. Proteomics 11:2320–2328PubMedCrossRefGoogle Scholar
  9. 9.
    Mauri P, Deho’ G (2008) A proteomic approach to the analysis of RNA degradosome composition in Escherichia coli. Methods Enzymol 447:99–117PubMedCrossRefGoogle Scholar
  10. 10.
    Park SK, Venable JD, Xu T et al (2008) A quantitative analysis software tool for mass spectrometry-based proteomics. Nat Methods 5:319–322PubMedGoogle Scholar
  11. 11.
    Di Silvestre, D., Daminelli, S., Brunetti, P. et al. (2010) Bioinformatics tools for mass spectrometry-based proteomics analysis. Reviews in Pharmaceutical & Biomedical Analysis Bentham eBooks, pp. 30–51Google Scholar
  12. 12.
    Mauri P, Scarpa A, Nascimbeni AC et al (2005) Identification of proteins released by pancreatic cancer cells by multidimensional protein identification technology: a strategy for identification of novel cancer markers. FASEB 19:1125–1127Google Scholar
  13. 13.
    Regonesi ME, Del Favero M, Basilico F et al (2006) Analysis of the Escherichia coli RNA degradosome composition by a proteomic approach. Biochimie 88:151–161PubMedCrossRefGoogle Scholar
  14. 14.
    Simioniuc A, Campan M, Lionetti V et al (2011) Placental stem cells pre-treated with a hyaluronan mixed ester of butyric and retinoic acid to cure infarcted pig hearts: a multimodal study. Cardiovasc Res 90:546–556PubMedCrossRefGoogle Scholar
  15. 15.
    Sokal RR, Rohlf FJ (1994) Biometry: the principles and practice of statistics in biological research, 3rd edn. Freeman, New YorkGoogle Scholar
  16. 16.
    Griss J, Côté RG, Gerner C et al (2011) Published and Perished? The Influence of the Searched Protein Database on the Long-Term Storage of Proteomics Data. Mol Cell Proteomics 10:M111.008490PubMedCrossRefGoogle Scholar
  17. 17.
    Nesvizhskii AI, Keller A, Kolker E et al (2003) A statistical model for identifying proteins by tandem mass spectrometry. Anal Chem 75:4646–4658PubMedCrossRefGoogle Scholar
  18. 18.
    Zhang B, VerBerkmoes NC, Michael A et al (2006) Detecting Differential and Correlated Protein Expression in Label-Free Shotgun Proteomics. J Proteome Res 5:2909–2918PubMedCrossRefGoogle Scholar
  19. 19.
    Wang G, Wu WW, Zhang Z et al (2009) Decoy Methods for Assessing False Positives and False Discovery Rates in Shotgun Proteomics. Anal Chem 81:146–159PubMedCrossRefGoogle Scholar
  20. 20.
    Carvalho PC, Hewel J, Barbosa VC et al (2008) Identifying differences in protein expression levels by spectral counting and feature selection. Genet Mol Res 7:342–356PubMedCrossRefGoogle Scholar
  21. 21.
    Carvalho PC, Fischer JS, Chen EI et al (2008) PatternLab for proteomics: a tool for differential shotgun proteomics. BMC Bioinformatics 9:316–329PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Dario Di Silvestre
    • 1
  • Francesca Brambilla
    • 2
  • Pier Luigi Mauri
    • 3
  1. 1.Proteomics and Metabolomics UnitInstitute for Biomedical Technologies, CNRMilanItaly
  2. 2.Laboratory of Food Chemistry and Mass Spectrometry, Department of EndocrinologyUniversity of MilanMilanItaly
  3. 3.Proteomics and Metabolomics UnitInstitute for Biomedical Technologies – CNRMilanItaly

Personalised recommendations