Advertisement

A Hit Map-Based Statistical Method to Predict Best Ligands for Orphan Olfactory Receptors: Natural Key Odorants Versus “Lock Picks”

  • Dietmar Krautwurst
  • Matthias Kotthoff
Part of the Methods in Molecular Biology book series (MIMB, volume 1003)

Abstract

Smell is a multidimensional chemical sense. It creates a perception of our odorous environment by integrating the information of a plethora of volatile chemicals with other sensory inputs, emotions and memories. We are almost always exposed to odorant mixtures, not just single chemicals. Olfactory processing of complex odorant mixtures, such as coffee or wine, first is decoded at the site of perception by the hundreds of different olfactory receptor types, each residing in the cilia of their olfactory sensory neurons in the nose. Often, only a few odorants from many are essential to determine complex olfactory perception. But merely using the chemical structure of odorants is insufficient to identify and predict characteristic odor qualities and low odor thresholds. An understanding of odorant coding critically depends on knowledge about the interaction of key odorants of biologically relevant odor bouquets with their best cognate receptors. Here, we describe a hit map-based method of correlating the information content of all bioassay-tested odorants with their cognate odorant-receptor frequency in four phylogenetic subsets of human olfactory/chemosensory receptors.

Key words

Olfactory receptors Chemosensory receptors Key food odorants Body odorants Phylogenetic dendrogram Hit map Cognate odorant-receptor frequency 

References

  1. 1.
    Buck L, Axel R (1991) A novel multigene family may encode odorant receptors: a molecular basis for odor recognition. Cell 65(1):175–187PubMedCrossRefGoogle Scholar
  2. 2.
    Levy NS, Bakalyar HA, Reed RR (1991) Signal transduction in olfactory neurons. J Steroid Biochem Mol Biol 39(4B):633–637PubMedCrossRefGoogle Scholar
  3. 3.
    Dulac C, Axel R (1995) A novel family of genes encoding putative pheromone receptors in mammals. Cell 83(2):195–206PubMedCrossRefGoogle Scholar
  4. 4.
    Rodriguez I et al (2000) A putative pheromone receptor gene expressed in human olfactory mucosa. Nat Genet 26(1):18–19PubMedCrossRefGoogle Scholar
  5. 5.
    Rodriguez I, Mombaerts P (2002) Novel human vomeronasal receptor-like genes reveal species-specific families. Curr Biol 12(12):R409–R411PubMedCrossRefGoogle Scholar
  6. 6.
    Lewin AH (2006) Receptors of mammalian trace amines. AAPS J 8(1):E138–E145PubMedCrossRefGoogle Scholar
  7. 7.
    Liberles SD (2009) Trace amine-associated receptors are olfactory receptors in vertebrates. Ann N Y Acad Sci 1170:168–172PubMedCrossRefGoogle Scholar
  8. 8.
    Liberles SD, Buck LB (2006) A second class of chemosensory receptors in the olfactory epithelium. Nature 442(7103):645–650PubMedCrossRefGoogle Scholar
  9. 9.
    HORDE (2011) The Human Olfactory Receptor Data Exploratorium (HORDE), The Weizmann Institute, http://bioportal.weizmann.ac.il/HORDE/ Google Scholar
  10. 10.
    Malnic B, Godfrey PA, Buck LB (2004) The human olfactory receptor gene family. Proc Natl Acad Sci USA 101(8):2584–2589PubMedCrossRefGoogle Scholar
  11. 11.
    Menashe I, Aloni R, Lancet D (2006) A probabilistic classifier for olfactory receptor pseudogenes. BMC Bioinformatics 7:393PubMedCrossRefGoogle Scholar
  12. 12.
    Niimura Y, Nei M (2003) Evolution of olfactory receptor genes in the human genome. Proc Natl Acad Sci USA 100(21):12235–12240PubMedCrossRefGoogle Scholar
  13. 13.
    Olender T et al (2004) The olfactory receptor universe–from whole genome analysis to structure and evolution. Genet Mol Res 3(4):545–553PubMedGoogle Scholar
  14. 14.
    Olender T, Lancet D, Nebert DW (2008) Update on the olfactory receptor (OR) gene superfamily. Hum Genomics 3(1):87–97PubMedCrossRefGoogle Scholar
  15. 15.
    Zozulya S, Echeverri F, Nguyen T (2001) The human olfactory receptor repertoire. Genome Biol 2(6):RESEARCH0018PubMedCrossRefGoogle Scholar
  16. 16.
    Glusman G et al (2000) The olfactory receptor gene superfamily: data mining, classification, and nomenclature. Mamm Genome 11(11):1016–1023PubMedCrossRefGoogle Scholar
  17. 17.
    Gilad Y, Lancet D (2003) Population differences in the human functional olfactory repertoire. Mol Biol Evol 20(3):307–314PubMedCrossRefGoogle Scholar
  18. 18.
    Menashe I et al (2007) Genetic elucidation of human hyperosmia to isovaleric acid. PLoS Biol 5(11):2462–2468CrossRefGoogle Scholar
  19. 19.
    Menashe I et al (2003) Different noses for different people. Nat Genet 34(2):143–144PubMedCrossRefGoogle Scholar
  20. 20.
    Sharon D et al (2000) Identification and characterization of coding single-nucleotide polymorphisms within a human olfactory receptor gene cluster. Gene 260(1–2):87–94PubMedCrossRefGoogle Scholar
  21. 21.
    Hayden S et al (2010) Ecological adaptation determines functional mammalian olfactory subgenomes. Genome Res 20(1):1–9PubMedCrossRefGoogle Scholar
  22. 22.
    Grosch W (2001) Evaluation of the key odorants of foods by dilution experiments, aroma models and omission. Chem Senses 26(5):533–545PubMedCrossRefGoogle Scholar
  23. 23.
    Grosch W (2000) Specificity of the human nose in perceiving food odorants. In: Frontiers of flavour science, Ninth Weurman flavour research symposium. Deutsche Forschungsanstalt fuer Lebensmittelchemie, GarchingGoogle Scholar
  24. 24.
    Wyart C et al (2007) Smelling a single component of male sweat alters levels of cortisol in women. J Neurosci 27(6):1261–1265PubMedCrossRefGoogle Scholar
  25. 25.
    Doucet S et al (2007) The “smellscape” of mother’s breast: effects of odor masking and selective unmasking on neonatal arousal, oral, and visual responses. Dev Psychobiol 49(2):129–138PubMedCrossRefGoogle Scholar
  26. 26.
    Boulkroune N et al (2007) Repetitive olfactory exposure to the biologically significant steroid androstadienone causes a hedonic shift and gender dimorphic changes in olfactory-evoked potentials. Neuropsychopharmacology 24:24Google Scholar
  27. 27.
    Miller MC (2006) Human pheromones. Harv Ment Health Lett 23(5):8Google Scholar
  28. 28.
    Laska M, Wieser A, Salazar LT (2006) Sex-specific differences in olfactory sensitivity for putative human pheromones in nonhuman primates. J Comp Psychol 120(2):106–112PubMedCrossRefGoogle Scholar
  29. 29.
    Keller A et al (2007) Genetic variation in a human odorant receptor alters odour perception. Nature 449(7161):468–472PubMedCrossRefGoogle Scholar
  30. 30.
    Shirokova E et al (2008) The human vomeronasal type-1 receptor family–detection of volatiles and cAMP signaling in HeLa/Olf cells. FASEB J 22(5):1416–1425PubMedCrossRefGoogle Scholar
  31. 31.
    Krautwurst D (2008) Human olfactory receptor families and their odorants. Chem Biodivers 5(6):842–852PubMedCrossRefGoogle Scholar
  32. 32.
    Shirokova E et al (2005) Identification of specific ligands for orphan olfactory receptors. G protein-dependent agonism and antagonism of odorants. J Biol Chem 280(12):11807–11815PubMedCrossRefGoogle Scholar
  33. 33.
    NCBI (2011) National Center for Biotechnology Information, Gene search tool, Available from: http://www.ncbi.nlm.nih.gov/gene/ Google Scholar
  34. 34.
    Tamura K et al (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28(10):2731–2739PubMedCrossRefGoogle Scholar
  35. 35.
    Knudsen B et al. (2011) CLC Main Workbench 6.5, CLCbioGoogle Scholar
  36. 36.
    PubMed (2011) PubMed health, Available from: http://www.ncbi.nlm.nih.gov/pubmedhealth/ Google Scholar
  37. 37.
    SciFinder (2009) Chemistry research tool, Available from: https://scifinder.cas.org Google Scholar
  38. 38.
    Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4(4):406–425PubMedGoogle Scholar
  39. 39.
    Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791CrossRefGoogle Scholar
  40. 40.
    Acree TE et al (1984) Food Chem. 14(4):273–286CrossRefGoogle Scholar
  41. 41.
    Rothe M, Thomas B (1963) Z. Lebensm.-Unters. Forsch. 119:302–310CrossRefGoogle Scholar
  42. 42.
    Schieberle P (1995) New developments on methods for analysis of volatile flavor compounds and their precursors. In: Gaonkar AG (ed) Characterization of food-emerging methods. Elsevier, Amsterdam, pp 403–433Google Scholar
  43. 43.
    Gallagher M et al (2008) Analyses of volatile organic compounds from human skin. Br J Dermatol 159(4):780–791PubMedCrossRefGoogle Scholar
  44. 44.
    Hasegawa Y, Yabuki M, Matsukane M (2004) Identification of new odoriferous compounds in human axillary sweat. Chem Biodivers 1(12):2042–2050PubMedCrossRefGoogle Scholar
  45. 45.
    Natsch A et al (2006) A broad diversity of ­volatile carboxylic acids, released by a bacterial aminoacylase from axilla secretions, as candidate molecules for the determination of human-body odor type. Chem Biodivers 3(1):1–20PubMedCrossRefGoogle Scholar
  46. 46.
    Natsch A et al (2003) A specific bacterial aminoacylase cleaves odorant precursors secreted in the human axilla. J Biol Chem 278(8):5718–5727PubMedCrossRefGoogle Scholar
  47. 47.
    Natsch A, Schmid J, Flachsmann F (2004) Identification of odoriferous sulfanylalkanols in human axilla secretions and their formation through cleavage of cysteine precursors by a C-S lyase isolated from axilla bacteria. Chem Biodivers 1(7):1058–1072PubMedCrossRefGoogle Scholar
  48. 48.
    Zhang X, Firestein S (2002) The olfactory receptor gene superfamily of the mouse. Nat Neurosci 5(2):124–133PubMedGoogle Scholar
  49. 49.
    Tatusov RL, Koonin EV, Lipman DJ (1997) A genomic perspective on protein families. Science 278(5338):631–637PubMedCrossRefGoogle Scholar
  50. 50.
    Schmiedeberg K et al (2007) Structural determinants of odorant recognition by the human olfactory receptors OR1A1 and OR1A2. J Struct Biol 159(3):400–412PubMedCrossRefGoogle Scholar
  51. 51.
    Malnic B et al (1999) Combinatorial receptor codes for odors. Cell 96(5):713–723PubMedCrossRefGoogle Scholar
  52. 52.
    Lapidot M et al (2001) Mouse-human orthology relationships in an olfactory receptor gene cluster. Genomics 71(3):296–306PubMedCrossRefGoogle Scholar
  53. 53.
    Glusman G et al (2001) The complete human olfactory subgenome. Genome Res 11(5):685–702PubMedCrossRefGoogle Scholar
  54. 54.
    Jacquier V, Pick H, Vogel H (2006) Characterization of an extended receptive ligand repertoire of the human olfactory receptor OR17-40 comprising structurally related compounds. J Neurochem 97(2):537–544PubMedCrossRefGoogle Scholar
  55. 55.
    Sanz G et al (2005) Comparison of odorant specificity of two human olfactory receptors from different phylogenetic classes and evidence for antagonism. Chem Senses 30(1):69–80PubMedCrossRefGoogle Scholar
  56. 56.
    Spehr M et al (2003) Identification of a testicular odorant receptor mediating human sperm chemotaxis. Science 299(5615): 2054–2058PubMedCrossRefGoogle Scholar
  57. 57.
    Wetzel CH et al (1999) Specificity and sensitivity of a human olfactory receptor functionally expressed in human embryonic kidney 293 cells and Xenopus Laevis oocytes. J Neurosci 19(17):7426–7433PubMedGoogle Scholar
  58. 58.
    Grosmaitre X et al (2009) SR1, a mouse odorant receptor with an unusually broad response profile. J Neurosci 29(46):14545–14552PubMedCrossRefGoogle Scholar
  59. 59.
    Grus WE, Zhang J (2008) Distinct evolutionary patterns between chemoreceptors of 2 vertebrate olfactory systems and the differential tuning hypothesis. Mol Biol Evol 25(8):1593–1601PubMedCrossRefGoogle Scholar
  60. 60.
    Saito H et al (2009) Odor coding by a mammalian receptor repertoire. Sci Signal 2(60):ra9PubMedCrossRefGoogle Scholar
  61. 61.
    Duan X et al (2012) Crucial role of copper in detection of metal-coordinating odorants. Proc Natl Acad Sci USA 109(9):3492–3497PubMedCrossRefGoogle Scholar
  62. 62.
    Fujita Y et al (2007) Deorphanization of Dresden G protein-coupled receptor for an odorant receptor. J Recept Signal Transduct Res 27(4):323–334PubMedCrossRefGoogle Scholar
  63. 63.
    Kajiya K et al (2001) Molecular bases of odor discrimination: reconstitution of olfactory receptors that recognize overlapping sets of odorants. J Neurosci 21(16):6018–6025PubMedGoogle Scholar
  64. 64.
    Kotthoff M, Schieberle P, Krautwurst D(2010) Human olfactory receptors for thiol key food odorants. In: 9th Wartburg symposium on flavor chemistry & biology. Eisenach, Chair for Food Chemistry, Technische Universitaet MuenchenGoogle Scholar
  65. 65.
    Krautwurst D, Yau KW, Reed RR (1998) Identification of ligands for olfactory receptors by functional expression of a receptor library. Cell 95(7):917–926PubMedCrossRefGoogle Scholar
  66. 66.
    Li YR, Matsunami H (2011) Activation state of the m3 muscarinic acetylcholine receptor modulates Mammalian odorant receptor signaling. Sci Signal 4(155):ra1PubMedCrossRefGoogle Scholar
  67. 67.
    Saito H et al (2004) RTP family members induce functional expression of mammalian odorant receptors. Cell 119(5):679–691PubMedCrossRefGoogle Scholar
  68. 68.
    Schmiedeberg K (2004) Molekulare klonierung, charakterisierung und struktur-funktions-beziehungen von olfaktorischen rezeptoren für schlüsselaromastoffe, In: Mathematisch-naturwissenschaftliche fakultät 2004, Universität Potsdam, PotsdamGoogle Scholar
  69. 69.
    Touhara K et al (1999) Functional identification and reconstitution of an odorant receptor in single olfactory neurons. Proc Natl Acad Sci USA 96(7):4040–4045PubMedCrossRefGoogle Scholar
  70. 70.
    Olender S et al (2012) BMC Genomics 13:414PubMedCrossRefGoogle Scholar
  71. 71.
    Wallrabenstein I (2013) PLoS One 8(2):e54950PubMedCrossRefGoogle Scholar
  72. 72.
    Adipietro KA et al (2012) PLoS 8(7):p. e1002821PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2013

Authors and Affiliations

  • Dietmar Krautwurst
    • 1
  • Matthias Kotthoff
    • 2
  1. 1.German Research Center for Food ChemistryLeibniz InstituteFreisingGermany
  2. 2.Department Environmental and Food Analysis Auf dem AbergFraunhofer-Institute for Molecular Biology and Applied EcologySchmallenbergGermany

Personalised recommendations