Skip to main content

Monitoring Extracellular Glutamate in the Brain by Microdialysis and Microsensors

  • Protocol
  • First Online:

Part of the book series: Neuromethods ((NM,volume 80))

Abstract

Recording basal levels of extracellular glutamate by microdialysis in the brain of freely moving animals is of limited value as the result does not fulfill the criteria of synaptic origin (TTX or calcium dependency). In this chapter we discuss whether the recently developed microsensor technique provides an alternative for sampling glutamate by microdialysis. Although glutamate microsensors show advantages in dimensional and temporal resolution, the properties of the detected glutamate do not differ basically from glutamate in microdialysate. The results suggest that glutamate detected by both microdialysis and microsensoring methods is closely regulated by non-neuronal cells. However, there is some evidence that evoked glutamate release recorded by microsensors (e.g., by elevated potassium or behavioral simulation), in the time frame of seconds, might reflect neuronal release.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Javitt DC (2007) Glutamate and schizophrenia: phencyclidine. N-methyl-D-aspartate receptors, and dopamine-glutamate interactions. Int Rev Neurobiol 78:69–108

    Article  PubMed  CAS  Google Scholar 

  2. Gardoni F, Di Luca M (2006) New targets for pharmacological intervention in the glutamatergic synapse. Eur J Pharmacol 545:2–10

    Article  PubMed  CAS  Google Scholar 

  3. Goff DC, Coyle JT (2001) The emerging role of glutamate in the pathophysiology and treatment of schizophrenia. Am J Psychiatry 158:1367–1377

    Article  PubMed  CAS  Google Scholar 

  4. Meldrum BS (1994) The role of glutamate in epilepsy and other CNS disorders. Neurology 44:S14–S23

    PubMed  CAS  Google Scholar 

  5. Amiel JM, Mathew SJ (2007) Glutamate and anxiety disorders. Curr Psychiatry Rep 9:278–283

    Article  PubMed  Google Scholar 

  6. Javitt DC (2004) Glutamate as a therapeutic target in psychiatric disorders. Mol Psychiatry 9(984–997):979

    Article  Google Scholar 

  7. Gaddum J (1961) Push-pull cannulae. J Physiol 155:1P–2P

    Google Scholar 

  8. Burmeister JJ, Pomerleau F, Palmer M, Day BK, Huettl P, Gerhardt GA (2002) Improved ceramic-based multisite microelectrode for rapid measurements of L-glutamate in the CNS. J Neurosci Methods 119:163–171

    Article  PubMed  CAS  Google Scholar 

  9. Hu Y, Mitchell KM, Albahadily FN, Michaelis EK, Wilson GS (1994) Direct measurement of glutamate release in the brain using a dual enzyme-based electrochemical sensor. Brain Res 659:117–125

    Article  PubMed  CAS  Google Scholar 

  10. Kulagina NV, Shankar L, Michael AC (1999) Monitoring glutamate and ascorbate in the extracellular space of brain tissue with electrochemical microsensors. Anal Chem 71:5093–5100

    Article  PubMed  CAS  Google Scholar 

  11. Oldenziel WH, Dijkstra G, Cremers TI, Westerink BH (2006) In vivo monitoring of extracellular glutamate in the brain with a microsensor. Brain Res 1118:34–42

    Article  PubMed  CAS  Google Scholar 

  12. Bowser MT, Kennedy RT (2001) In vivo monitoring of amine neurotransmitters using microdialysis with on-line capillary electrophoresis. Electrophoresis 22:3668–3676

    Article  PubMed  CAS  Google Scholar 

  13. Danbolt NC (2001) Glutamate uptake. Prog Neurobiol 65:1–105

    Article  PubMed  CAS  Google Scholar 

  14. Featherstone DE, Shippy SA (2008) Regulation of synaptic transmission by ambient extracellular glutamate. Neuroscientist 14:171–181

    Article  PubMed  CAS  Google Scholar 

  15. Osen KK, Storm-Mathisen J, Ottersen OP, Dihle B (1995) Glutamate is concentrated in and released from parallel fiber terminals in the dorsal cochlear nucleus: a quantitative immunocytochemical analysis in guinea pig. J Comp Neurol 357:482–500

    Article  PubMed  CAS  Google Scholar 

  16. Ottersen OP (1989) Postembedding immunogold labelling of fixed glutamate: an electron microscopic analysis of the relationship between gold particle density and antigen concentration. J Chem Neuroanat 2:57–66

    PubMed  CAS  Google Scholar 

  17. Meldrum BS (2000) Glutamate as a neurotransmitter in the brain: review of physiology and pathology. J Nutr 130:1007S–1015S

    PubMed  CAS  Google Scholar 

  18. Lerma J, Herranz AS, Herreras O, Abraira V, Martin del Rio R (1986) In vivo determination of extracellular concentration of amino acids in the rat hippocampus. A method based on brain dialysis and computerized analysis. Brain Res 384:145–155

    Article  PubMed  CAS  Google Scholar 

  19. Herman MA, Jahr CE (2007) Extracellular glutamate concentration in hippocampal slice. J Neurosci 27:9736–9741

    Article  PubMed  CAS  Google Scholar 

  20. Clements JD, Lester RA, Tong G, Jahr CE, Westbrook GL (1992) The time course of glutamate in the synaptic cleft. Science 258:1498–1501

    Article  PubMed  CAS  Google Scholar 

  21. Nedergaard M, Takano T, Hansen AJ (2002) Beyond the role of glutamate as a neurotransmitter. Nat Rev Neurosci 3:748–755

    Article  PubMed  CAS  Google Scholar 

  22. Dingledine R, Borges K, Bowie D, Traynelis SF (1999) The glutamate receptor ion channels. Pharmacol Rev 51:7–62

    PubMed  CAS  Google Scholar 

  23. Patneau DK, Mayer ML (1990) Structure-activity relationships for amino acid transmitter candidates acting at N-methyl-D-aspartate and quisqualate receptors. J Neurosci 10:2385–2399

    PubMed  CAS  Google Scholar 

  24. Pin JP, Duvoisin R (1995) The metabotropic glutamate receptors: structure and functions. Neuropharmacology 34:1–26

    Article  PubMed  CAS  Google Scholar 

  25. Conn PJ, Pin JP (1997) Pharmacology and functions of metabotropic glutamate receptors. Annu Rev Pharmacol Toxicol 37:205–237

    Article  PubMed  CAS  Google Scholar 

  26. Barbour B, Keller BU, Llano I, Marty A (1994) Prolonged presence of glutamate ­during excitatory synaptic transmission to cerebellar Purkinje cells. Neuron 12:1331–1343

    Article  PubMed  CAS  Google Scholar 

  27. Turecek R, Trussell LO (2000) Control of synaptic depression by glutamate transporters. J Neurosci 20:2054–2063

    PubMed  CAS  Google Scholar 

  28. Diamond JS, Jahr CE (1997) Transporters buffer synaptically released glutamate on a submillisecond time scale. J Neurosci 17:4672–4687

    PubMed  CAS  Google Scholar 

  29. Lehre KP, Danbolt NC (1998) The number of glutamate transporter subtype molecules at glutamatergic synapses: chemical and stereological quantification in young adult rat brain. J Neurosci 18:8751–8757

    PubMed  CAS  Google Scholar 

  30. Levy LM, Warr O, Attwell D (1998) Stoichiometry of the glial glutamate transporter GLT-1 expressed inducibly in a Chinese hamster ovary cell line selected for low endogenous Na+-dependent glutamate uptake. J Neurosci 18:9620–9628

    PubMed  CAS  Google Scholar 

  31. Zerangue N, Kavanaugh MP (1996) Flux coupling in a neuronal glutamate transporter. Nature 383:634–637

    Article  PubMed  CAS  Google Scholar 

  32. Baker DA, Xi ZX, Shen H, Swanson CJ, Kalivas PW (2002) The origin and neuronal function of in vivo nonsynaptic glutamate. J Neurosci 22:9134–9141

    PubMed  CAS  Google Scholar 

  33. Montiel T, Camacho A, Estrada-Sanchez AM, Massieu L (2005) Differential effects of the substrate inhibitor l-trans-pyrrolidine-2,4-dicarboxylate (PDC) and the non-substrate inhibitor DL-threo-beta-benzyloxyaspartate (DL-TBOA) of glutamate transporters on neuronal damage and extracellular amino acid levels in rat brain in vivo. Neuroscience 133:667–678

    Article  PubMed  CAS  Google Scholar 

  34. Nyitrai G, Kekesi KA, Juhasz G (2006) Extracellular level of GABA and Glu: in vivo microdialysis-HPLC measurements. Curr Top Med Chem 6:935–940

    Article  PubMed  CAS  Google Scholar 

  35. Rutherford EC, Pomerleau F, Huettl P, Stromberg I, Gerhardt GA (2007) Chronic second-by-second measures of L-glutamate in the central nervous system of freely moving rats. J Neurochem 102:712–722

    Article  PubMed  CAS  Google Scholar 

  36. Cavelier P, Attwell D (2005) Tonic release of glutamate by a DIDS-sensitive mechanism in rat hippocampal slices. J Physiol 564:397–410

    Article  PubMed  CAS  Google Scholar 

  37. Le Meur K, Galante M, Angulo MC, Audinat E (2007) Tonic activation of NMDA receptors by ambient glutamate of non-synaptic origin in the rat hippocampus. J Physiol 580:373–383

    Article  PubMed  CAS  Google Scholar 

  38. Oldenziel WH, Dijkstra G, Cremers TI, Westerink BH (2006) Evaluation of hydrogel-coated glutamate microsensors. Anal Chem 78:3366–3378

    Article  PubMed  CAS  Google Scholar 

  39. Oldenziel WH, van der Zeyden M, Dijkstra G, Ghijsen WE, Karst H, Cremers TI, Westerink BH (2007) Monitoring extracellular glutamate in hippocampal slices with a microsensor. J Neurosci Methods 160:37–44

    Article  PubMed  CAS  Google Scholar 

  40. Oka T, Tasaki C, Sezaki H, Sugawara M (2007) Implantation of a glass capillary-based enzyme electrode in mouse hippocampal slices for monitoring of L-glutamate release. Anal Bioanal Chem 388:1673–1679

    Article  PubMed  CAS  Google Scholar 

  41. Kottegoda S, Shaik I, Shippy SA (2002) Demonstration of low flow push-pull perfusion. J Neurosci Methods 121:93–101

    Article  PubMed  Google Scholar 

  42. Kennedy RT, Thompson JE, Vickroy TW (2002) In vivo monitoring of amino acids by direct sampling of brain extracellular fluid at ultralow flow rates and capillary electrophoresis. J Neurosci Methods 114:39–49

    Article  PubMed  CAS  Google Scholar 

  43. Cellar NA, Burns ST, Meiners JC, Chen H, Kennedy RT (2005) Microfluidic chip for low-flow push-pull perfusion sampling in vivo with on-line analysis of amino acids. Anal Chem 77:7067–7073

    Article  PubMed  CAS  Google Scholar 

  44. Shakil SS, Holmer HK, Moore C, Abernathy AT, Jakowec MW, Petzinger GM, Meshul CK (2005) High and low responders to novelty show differential effects in striatal glutamate. Synapse 58:200–207

    Article  PubMed  CAS  Google Scholar 

  45. Holmer HK, Keyghobadi M, Moore C, Meshul CK (2005) L-dopa-induced reversal in striatal glutamate following partial depletion of nigrostriatal dopamine with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Neuroscience 136:333–341

    Article  PubMed  CAS  Google Scholar 

  46. Di Cara B, Dusticier N, Forni C, Lievens JC, Daszuta A (2001) Serotonin depletion produces long lasting increase in striatal glutamatergic transmission. J Neurochem 78:240–248

    Article  PubMed  Google Scholar 

  47. Segovia G, Porras A, Del Arco A, Mora F (2001) Glutamatergic neurotransmission in aging: a critical perspective. Mech Ageing Dev 122:1–29

    Article  PubMed  CAS  Google Scholar 

  48. Segovia G, Del Arco A, Mora F (1997) Endogenous glutamate increases extracellular concentrations of dopamine. GABA, and taurine through NMDA and AMPA/kainate receptors in striatum of the freely moving rat: a microdialysis study. J Neurochem 69:1476–1483

    Article  PubMed  CAS  Google Scholar 

  49. Miele M, Berners M, Boutelle MG, Kusakabe H, Fillenz M (1996) The determination of the extracellular concentration of brain glutamate using quantitative microdialysis. Brain Res 707:131–133

    Article  PubMed  CAS  Google Scholar 

  50. Rocha L, Briones M, Ackermann RF, Anton B, Maidment NT, Evans CJ, Engel J Jr (1996) Pentylenetetrazol-induced kindling: early involvement of excitatory and inhibitory systems. Epilepsy Res 26:105–113

    Article  PubMed  Google Scholar 

  51. Boatell ML, Bendahan G, Mahy N (1995) Time-related cortical amino acid changes after basal forebrain lesion: a microdialysis study. J Neurochem 64:285–291

    Article  PubMed  CAS  Google Scholar 

  52. Rahman MA, Kwon NH, Won MS, Choe ES, Shim YB (2005) Functionalized conducting polymer as an enzyme-immobilizing ­substrate: an amperometric glutamate microbiosensor for in vivo measurements. Anal Chem 77:4854–4860

    Article  PubMed  CAS  Google Scholar 

  53. Day BK, Pomerleau F, Burmeister JJ, Huettl P, Gerhardt GA (2006) Microelectrode array studies of basal and potassium-evoked release of L-glutamate in the anesthetized rat brain. J Neurochem 96:1626–1635

    Article  PubMed  CAS  Google Scholar 

  54. Nickell J, Pomerleau F, Allen J, Gerhardt GA (2005) Age-related changes in the dynamics of potassium-evoked L-glutamate release in the striatum of Fischer 344 rats. J Neural Transm 112:87–96

    Article  PubMed  CAS  Google Scholar 

  55. Hascup KN, Hascup ER, Pomerleau F, Huettl P, Gerhardt GA (2008) Second-by-second measures of L-glutamate in the prefrontal cortex and striatum of freely moving mice. J Pharmacol Exp Ther 324:725–731

    Article  PubMed  CAS  Google Scholar 

  56. Bezzi P, Gundersen V, Galbete JL, Seifert G, Steinhauser C, Pilati E, Volterra A (2004) Astrocytes contain a vesicular compartment that is competent for regulated exocytosis of glutamate. Nat Neurosci 7:613–620

    Article  PubMed  CAS  Google Scholar 

  57. Moran MM, McFarland K, Melendez RI, Kalivas PW, Seamans JK (2005) Cystine/glutamate exchange regulates metabotropic glutamate receptor presynaptic inhibition of excitatory transmission and vulnerability to cocaine seeking. J Neurosci 25:6389–6393

    Article  PubMed  CAS  Google Scholar 

  58. Fillenz M (1995) Physiological release of excitatory amino acids. Behav Brain Res 71:51–67

    Article  PubMed  CAS  Google Scholar 

  59. Levi G, Raiteri M (1993) Carrier-mediated release of neurotransmitters. Trends Neurosci 16:415–419

    Article  PubMed  CAS  Google Scholar 

  60. Bennett MV, Contreras JE, Bukauskas FF, Saez JC (2003) New roles for astrocytes: gap junction hemichannels have something to communicate. Trends Neurosci 26:610–617

    Article  PubMed  CAS  Google Scholar 

  61. Ye ZC, Wyeth MS, Baltan-Tekkok S, Ransom BR (2003) Functional hemichannels in astrocytes: a novel mechanism of glutamate release. J Neurosci 23:3588–3596

    PubMed  CAS  Google Scholar 

  62. Duan S, Anderson CM, Keung EC, Chen Y, Swanson RA (2003) P2X7 receptor-mediated release of excitatory amino acids from astrocytes. J Neurosci 23:1320–1328

    PubMed  CAS  Google Scholar 

  63. Kimelberg HK, Goderie SK, Higman S, Pang S, Waniewski RA (1990) Swelling-induced release of glutamate, aspartate, and taurine from astrocyte cultures. J Neurosci 10:1583–1591

    PubMed  CAS  Google Scholar 

  64. Rutledge EM, Kimelberg HK (1996) Release of (3H)-D-aspartate from primary astrocyte cultures in response to raised external potassium. J Neurosci 16:7803–7811

    PubMed  CAS  Google Scholar 

  65. Basarsky TA, Feighan D, MacVicar BA (1999) Glutamate release through volume-activated channels during spreading depression. J Neurosci 19:6439–6445

    PubMed  CAS  Google Scholar 

  66. Blakely RD, Robinson MB, Thompson RC, Coyle JT (1988) Hydrolysis of the brain dipeptide N-acetyl-L-aspartyl-L-glutamate: subcellular and regional distribution, ontogeny, and the effect of lesions on N-acetylated-alpha-linked acidic dipeptidase activity. J Neurochem 50:1200–1209

    Article  PubMed  CAS  Google Scholar 

  67. Ungerstedt U (1991) Microdialysis–principles and applications for studies in animals and man. J Intern Med 230:365–373

    Article  PubMed  CAS  Google Scholar 

  68. Westerink B, Rea K, Oldenziel W (2007) Microdialysis of glutamate and GABA in the brain: analysis and interpretation. In: Westerink BHC, Cremers TIFH (eds) Handbook of microdialysis. Elsevier, The Netherlands

    Google Scholar 

  69. Westerink BH, Damsma G, Rollema H, De Vries JB, Horn AS (1987) Scope and limitations of in vivo brain dialysis: a comparison of its application to various neurotransmitter systems. Life Sci 41:1763–1776

    Article  PubMed  CAS  Google Scholar 

  70. Li Z, Boubriak OA, Urban JP, Cui ZF (2006) Microdialysis for monitoring the process of functional tissue culture. Int J Artif Organs 29:858–865

    PubMed  CAS  Google Scholar 

  71. Consolo S, Wu CF, Fiorentini F, Ladinsky H, Vezzani A (1987) Determination of endogenous acetylcholine release in freely moving rats by transstriatal dialysis coupled to a radioenzymatic assay: effect of drugs. J Neurochem 48:1459–1465

    Article  PubMed  CAS  Google Scholar 

  72. Imperato A, Di Chiara G (1984) Trans-striatal dialysis coupled to reverse phase high performance liquid chromatography with electrochemical detection: a new method for the study of the in vivo release of endogenous dopamine and metabolites. J Neurosci 4:966–977

    PubMed  CAS  Google Scholar 

  73. Kalen P, Strecker RE, Rosengren E, Bjorklund A (1988) Endogenous release of neuronal serotonin and 5-hydroxyindoleacetic acid in the caudate-putamen of the rat as revealed by intracerebral dialysis coupled to high-­performance liquid chromatography with fluorimetric detection. J Neurochem 51:1422–1435

    Article  PubMed  CAS  Google Scholar 

  74. L’Heureux R, Dennis T, Curet O, Scatton B (1986) Measurement of endogenous noradrenaline release in the rat cerebral cortex in vivo by transcortical dialysis: effects of drugs affecting noradrenergic transmission. J Neurochem 46:1794–1801

    Article  PubMed  Google Scholar 

  75. Benveniste H, Diemer NH (1987) Cellular reactions to implantation of a microdialysis tube in the rat hippocampus. Acta Neuropathol 74:234–238

    Article  PubMed  CAS  Google Scholar 

  76. Clapp-Lilly KL, Roberts RC, Duffy LK, Irons KP, Hu Y, Drew KL (1999) An ultrastructural analysis of tissue surrounding a microdialysis probe. J Neurosci Methods 90:129–142

    Article  PubMed  CAS  Google Scholar 

  77. Zhou F, Braddock JF, Hu Y, Zhu X, Castellani RJ, Smith MA, Drew KL (2002) Microbial origin of glutamate, hibernation and tissue trauma: an in vivo microdialysis study. J Neurosci Methods 119:121–128

    Article  PubMed  CAS  Google Scholar 

  78. Rada P, Mendialdua A, Hernandez L, Hoebel BG (2003) Extracellular glutamate increases in the lateral hypothalamus during meal initiation and GABA peaks during satiation: microdialysis measurement every 30 s. Behav Neurosci 117:222

    Article  PubMed  CAS  Google Scholar 

  79. Rossell S, Gonzalez LE, Hernandez L (2003) One-second time resolution brain microdialysis in fully awake rats. Protocol for the collection, separation and sorting of nanoliter dialysate volumes. J Chromatogr B Analyt Technol Biomed Life Sci 784:385–393

    Article  PubMed  CAS  Google Scholar 

  80. Cremers TI, de Vries MG, Huinink KD, van Loon JP, v d Hart M, Ebert B, Westerink BH, De Lange EC (2009) Quantitative microdialysis using modified ultraslow microdialysis: direct rapid and reliable determination of free brain concentrations with the MetaQuant technique. J Neurosci Methods 178:249–254

    Article  PubMed  CAS  Google Scholar 

  81. Timmerman W, Westerink BH (1997) Brain microdialysis of GABA and glutamate: what does it signify? Synapse 27:242–261

    Article  PubMed  CAS  Google Scholar 

  82. Xi ZX, Shen H, Baker DA, Kalivas PW (2003) Inhibition of non-vesicular glutamate release by group III metabotropic glutamate receptors in the nucleus accumbens. J Neurochem 87:1204–1212

    Article  PubMed  CAS  Google Scholar 

  83. Arnth-Jensen N, Jabaudon D, Scanziani M (2002) Cooperation between independent hippocampal synapses is controlled by glutamate uptake. Nat Neurosci 5:325–331

    Article  PubMed  CAS  Google Scholar 

  84. Rusakov DA, Lehre KP (2002) Perisynaptic asymmetry of glia: new insights into glutamate signalling. Trends Neurosci 25:492–494

    Article  PubMed  CAS  Google Scholar 

  85. Lada MW, Vickroy TW, Kennedy RT (1997) High temporal resolution monitoring of glutamate and aspartate in vivo using microdialysis on-line with capillary electrophoresis with laser-induced fluorescence detection. Anal Chem 69:4560–4565

    Article  PubMed  CAS  Google Scholar 

  86. Pena F, Tapia R (2000) Seizures and neurodegeneration induced by 4-aminopyridine in rat hippocampus in vivo: role of glutamate- and GABA-mediated neurotransmission and of ion channels. Neuroscience 101:547–561

    Article  PubMed  CAS  Google Scholar 

  87. Reid MS, Herrera-Marschitz M, Kehr J, Ungerstedt U (1990) Striatal dopamine and glutamate release: effects of intranigral injections of substance P. Acta Physiol Scand 140:527–537

    Article  PubMed  CAS  Google Scholar 

  88. Dijk SN, Francis PT, Stratmann GC, Bowen DM (1995) NMDA-induced glutamate and aspartate release from rat cortical pyramidal neurones: evidence for modulation by a 5-HT1A antagonist. Br J Pharmacol 115:1169–1174

    Article  PubMed  CAS  Google Scholar 

  89. Palmer AM, Hutson PH, Lowe SL, Bowen DM (1989) Extracellular concentrations of aspartate and glutamate in rat neostriatum following chemical stimulation of frontal cortex. Exp Brain Res 75:659–663

    Article  PubMed  CAS  Google Scholar 

  90. Kapoor V, Nakahara D, Blood RJ, Chalmers JP (1990) Preferential release of neuroactive amino acids from the ventrolateral medulla of the rat in vivo as measured by microdialysis. Neuroscience 37:187–191

    Article  PubMed  CAS  Google Scholar 

  91. Paleckova V, Palecek J, McAdoo DJ, Willis WD (1992) The non-NMDA antagonist CNQX prevents release of amino acids into the rat spinal cord dorsal horn evoked by sciatic nerve stimulation. Neurosci Lett 148:19–22

    Article  PubMed  CAS  Google Scholar 

  92. Sorkin LS, McAdoo DJ (1993) Amino acids and serotonin are released into the lumbar spinal cord of the anesthetized cat following intradermal capsaicin injections. Brain Res 607:89–98

    Article  PubMed  CAS  Google Scholar 

  93. Allchin RE, Batten TF, McWilliam PN, Vaughan PF (1994) Electrical stimulation of the vagus increases extracellular glutamate recovered from the nucleus tractus solitarii of the cat by in vivo microdialysis. Exp Physiol 79:265–268

    PubMed  CAS  Google Scholar 

  94. Liu N, Ho IK, Rockhold RW (1999) Contribution of glutamatergic systems in locus coeruleus to nucleus paragigantocellularis stimulation-evoked behavior. Pharmacol Biochem Behav 63:555–567

    Article  PubMed  CAS  Google Scholar 

  95. Tucci S, Contreras Q, Paez X, Gonzalez L, Rada P, Hernandez L (2000) Medial prefrontal transection enhances social interaction. II: Neurochemical studies. Brain Res 887:259–265

    Article  PubMed  CAS  Google Scholar 

  96. Clement P, Sarda N, Cespuglio R, Gharib A (2004) Changes occurring in cortical NO release and brain NO-synthases during a paradoxical sleep deprivation and subsequent recovery in the rat. J Neurochem 90:848–856

    Article  PubMed  CAS  Google Scholar 

  97. Giros B, Jaber M, Jones SR, Wightman RM, Caron MG (1996) Hyperlocomotion and indifference to cocaine and amphetamine in mice lacking the dopamine transporter. Nature 379:606–612

    Article  PubMed  CAS  Google Scholar 

  98. Xin Q, Wightman RM (1998) Simultaneous detection of catecholamine exocytosis and Ca2+ release from single bovine chromaffin cells using a dual microsensor. Anal Chem 70:1677–1681

    Article  PubMed  CAS  Google Scholar 

  99. Schuvailo OM, Soldatkin OO, Lefebvre A, Cespuglio R, Soldatkin AP (2006) Highly selective microbiosensors for in vivo measurement of glucose, lactate and glutamate. Anal Chim Acta 573–574:110–116

    Article  PubMed  CAS  Google Scholar 

  100. Pomerleau F, Day BK, Huettl P, Burmeister JJ, Gerhardt GA (2003) Real time in vivo measures of L-glutamate in the rat central nervous system using ceramic-based multisite microelectrode arrays. Ann NY Acad Sci 1003:454–457

    Article  PubMed  CAS  Google Scholar 

  101. Calia G, Rocchitta G, Migheli R, Puggioni G, Spissu Y, Bazzu G, Mazzarello V, Lowry J, O’Neill R, Desole M (2009) Biotelemetric monitoring of brain neurochemistry in conscious rats using microsensors and biosensors. Sensors 9:2511–2523

    Article  PubMed  CAS  Google Scholar 

  102. Schuhmann W (2002) Amperometric enzyme biosensors based on optimised electron-transfer pathways and non-manual immobilisation procedures. J Biotechnol 82:425–441

    PubMed  CAS  Google Scholar 

  103. Wilson GS, Hu Y (2000) Enzyme-based biosensors for in vivo measurements. Chem Rev 100:2693–2704

    Article  PubMed  CAS  Google Scholar 

  104. Qin S, van der Zeyden M, Oldenziel WH, Cremers TI, Westerink BH (2008) Microsensors for in vivo measurement of ­glutamate in brain tissue. Sensors 8:6860–6884

    Article  CAS  Google Scholar 

  105. Burmeister JJ, Moxon K, Gerhardt GA (2000) Ceramic-based multisite microelectrodes for electrochemical recordings. Anal Chem 72:187–192

    Article  PubMed  CAS  Google Scholar 

  106. McMahon CP, Rocchitta G, Serra PA, Kirwan SM, Lowry JP, O’Neill RD (2006) Control of the oxygen dependence of an implantable polymer/enzyme composite biosensor for glutamate. Anal Chem 78:2352–2359

    Article  PubMed  CAS  Google Scholar 

  107. Rothwell SA, Kinsella ME, Zain ZM, Serra PA, Rocchitta G, Lowry JP, O’Neill RD (2009) Contributions by a novel edge effect to the permselectivity of an electrosynthesized polymer for microbiosensor applications. Anal Chem 81:3911–3918

    Article  PubMed  CAS  Google Scholar 

  108. Oldenziel WH, de Jong LA, Dijkstra G, Cremers TI, Westerink BH (2006) Improving the performance of glutamate microsensors by purification of ascorbate oxidase. Anal Chem 78:2456–2460

    Article  PubMed  CAS  Google Scholar 

  109. Wahono N, Qin S, Oomen P, Cremers TI, de Vries MG, Westerink BH (2012) Evaluation of permselective membranes for optimization of intracerebral amperometric glutamate biosensors. Biosens Bioelectron 33:260–266

    Article  PubMed  CAS  Google Scholar 

  110. Hascup ER, af Bjerken S, Hascup KN, Pomerleau F, Huettl P, Stromberg I, Gerhardt GA (2009) Histological studies of the effects of chronic implantation of ceramic-based microelectrode arrays and microdialysis probes in rat prefrontal cortex. Brain Res 1291:12–20

    Article  PubMed  CAS  Google Scholar 

  111. Hashimoto A, Oka T, Nishikawa T (1995) Extracellular concentration of endogenous free D-serine in the rat brain as revealed by in vivo microdialysis. Neuroscience 66:635–643

    Article  PubMed  CAS  Google Scholar 

  112. Moghaddam B (1993) Stress preferentially increases extraneuronal levels of excitatory amino acids in the prefrontal cortex: comparison to hippocampus and basal ganglia. J Neurochem 60:1650–1657

    Article  PubMed  CAS  Google Scholar 

  113. Jabaudon D, Shimamoto K, Yasuda-Kamatani Y, Scanziani M, Gahwiler BH, Gerber U (1999) Inhibition of uptake unmasks rapid extracellular turnover of glutamate of nonvesicular origin. Proc Natl Acad Sci USA 96:8733–8738

    Article  PubMed  CAS  Google Scholar 

  114. Hascup ER, Hascup KN, Stephens M, Pomerleau F, Huettl P, Gratton A, Gerhardt GA (2010) Rapid microelectrode measurements and the origin and regulation of extracellular glutamate in rat prefrontal cortex. J Neurochem 115:1608–1620

    Article  PubMed  CAS  Google Scholar 

  115. Reyes E, Rossell S, Paredes D, Rada P, Tucci S, Gonzalez LE, Hernandez L (2002) Haloperidol abolished glutamate release evoked by photic stimulation of the visual cortex in rats. Neurosci Lett 327:149–152

    Article  PubMed  CAS  Google Scholar 

  116. Silva E, Hernandez L, Quinonez B, Gonzalez LE, Colasante C (2004) Selective amino acids changes in the medial and lateral preoptic area in the formalin test in rats. Neuroscience 124:395–404

    Article  PubMed  CAS  Google Scholar 

  117. Miele M, Boutelle MG, Fillenz M (1996) The source of physiologically stimulated glutamate efflux from the striatum of conscious rats. J Physiol 497(Pt 3):745–751

    PubMed  CAS  Google Scholar 

  118. Saulskaya NB, Mikhailova MO (2002) Feeding-induced decrease in extracellular ­glutamate level in the rat nucleus accumbens: dependence on glutamate uptake. Neuroscience 112:791–801

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Qin, S., Evering, M.(., Wahono, N., Cremers, T.I.F.H., Westerink, B.H.C. (2013). Monitoring Extracellular Glutamate in the Brain by Microdialysis and Microsensors. In: Marinesco, S., Dale, N. (eds) Microelectrode Biosensors. Neuromethods, vol 80. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-370-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-370-1_7

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-369-5

  • Online ISBN: 978-1-62703-370-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics