Molecularly Imprinted Polymers: Promising Advanced Materials for In Vivo Sensing

  • Yi Ge
  • Samir Akhtar
  • Farhan Mirza
  • Sergey Piletsky
  • Shenqi Wang
  • Dan Fei
Part of the Neuromethods book series (NM, volume 80)


Molecularly imprinted polymers are now well known as synthetic polymeric receptors or robust artificial antibodies (“plastibodies”) and have attracted considerable attention from the scientific and industrial community due to their inherent simplicity, reusability, robust polymer network, and cost-effectiveness. In this chapter, the concept and principles of molecularly imprinted polymers are introduced and illustrated. Their fascinating properties are further described and summarized with a focus on the medical/biological aspects followed by a comprehensive review of published research results on the sensor applications of molecularly imprinted polymers as biomaterials and/or biocompatible materials. In addition, a future outlook is presented demonstrating the great potentials of molecularly imprinted polymers for in vivo sensing.

Key words

Molecularly imprinted polymer MIP In vivo Sensor Diagnostic 


  1. 1.
    Piletsky SA, Turner APF (2006) Molecular imprinting of polymers. Landes Bioscience, Georgetown, TXGoogle Scholar
  2. 2.
    Yan M, Ramström O (2005) Molecularly imprinted materials-science and technology, 1st edn. Marcel Dekker, New York, NYGoogle Scholar
  3. 3.
    Ge Y, Turner APF (2008) Too large to fit? Recent developments in macromolecular imprinting. Trends Biotechnol 26:218–224PubMedCrossRefGoogle Scholar
  4. 4.
    Ge Y, Turner APF (2009) Molecularly imprinted sorbent assays: recent developments and applications. Chem Eur J 15:8100–8107PubMedCrossRefGoogle Scholar
  5. 5.
    Haupt K (2003) Molecularly imprinted ­polymers: the next generation. Anal Chem 75:376A–383APubMedCrossRefGoogle Scholar
  6. 6.
    Alexander C, Andersson HS, Andersson LI, Ansell RJ, Kirsch N, Nicholls IA, O’Mahony J, Whitcombe MJ (2006) Molecular imprinting science and technology: a survey of the literature for the years up to and including 2003. J Mol Recognit 19:106–180PubMedCrossRefGoogle Scholar
  7. 7.
    Polyakov MV (1931) Adsorption properties and structure of silica gel. Zh Fiz Khim 2:799–805Google Scholar
  8. 8.
    Dickey F (1949) The preparation of specific adsorbents. Proc Natl Acad Sci USA 35:227–229PubMedCrossRefGoogle Scholar
  9. 9.
    Wulff G, Sarhan A, Zabrocki K (1973) Enzyme-analogue built polymers and their use for the resolution of racemates. Tetrahedron Lett 44:4329–4332CrossRefGoogle Scholar
  10. 10.
    Suryanarayanan V, Wu CT, Ho KC (2010) Molecularly imprinted electrochemical sensors. Electroanalysis 22:1795–1811CrossRefGoogle Scholar
  11. 11.
    Arshady R, Mosbach K (1981) Synthesis of substrate-selective polymers by host-guest polymerization. Makromol Chem 182:687–692CrossRefGoogle Scholar
  12. 12.
    Sellergren B, Andersson L (1990) Molecular recognition in macroporous polymers prepared by a substrate analog imprinting strategy. J Org Chem 55:3381–3383CrossRefGoogle Scholar
  13. 13.
    Chianella I, Lotierzo M, Piletsky SA, Tothill IE, Chen B, Karim K, Turner APF (2002) Rational design of a polymer specific for microcystin-LR using a computational approach. Anal Chem 74:1288–1293PubMedCrossRefGoogle Scholar
  14. 14.
    Sellergren B (1999) Polymer- and template-related factors influencing the efficiency in molecularly imprinted solid-phase extractions. Trends Anal Chem 18:164–174CrossRefGoogle Scholar
  15. 15.
    Matsui J, Miyoshi Y, Doblhoff-Dier O, Takeuchi T (1995) A molecularly imprinted synthetic polymer receptor selective for Atrazine. Anal Chem 67:4404–4408CrossRefGoogle Scholar
  16. 16.
    Mayes AG, Whitcombe MJ (2005) Synthetic strategies for the generation of the molecularly imprinted organic polymers. Adv Drug Deliv Rev 57:1742–1778PubMedCrossRefGoogle Scholar
  17. 17.
    Sellergren B, Allender CJ (2005) Molecularly imprinting polymers: a bridge to advanced drug delivery. Adv Drug Deliv Rev 57:1733–1741PubMedCrossRefGoogle Scholar
  18. 18.
    Fujii Y, Matsutani K, Kikuchi K (1985) Formation of a specific co-ordination cavity for a chiral amino acid by template synthesis of a polymer Schiff base cobalt(III) complex. J Chem Soc Chem Commun 7:415–417CrossRefGoogle Scholar
  19. 19.
    Poma A, Turner APF, Piletsky SA (2010) Advances in the manufacture of MIP nanoparticles. Trends Biotechnol 28:629–637PubMedCrossRefGoogle Scholar
  20. 20.
    Guo TY, Xia YQ, Hao GJ, Zhang BH, Fu GQ, Yuan Z, He BL, Kennedy JF (2005) Chemically modified chitosan beads as matrices for adsorptive separation of proteins by molecularly imprinted polymer. Carbohydr Polym 62:214–221CrossRefGoogle Scholar
  21. 21.
    Ou SH, Wu MC, Chou TC, Liu CC (2004) Polyacrylamide gels with electrostatic functional groups for the molecular imprinting of lysozyme. Anal Chim Acta 504:163–166CrossRefGoogle Scholar
  22. 22.
    Odabaşi M, Say R, Denizli A (2007) Molecular imprinted particles for lysozyme purification. Mater Sci Eng 27:90–99CrossRefGoogle Scholar
  23. 23.
    Breton F, Euzet P, Piletsky SA, Giardi MT, Rouillon R (2006) Integration of photosynthetic biosensor with molecularly imprinted polymer-based solid phase extraction cartridge. Anal Chim Acta 569:50–57CrossRefGoogle Scholar
  24. 24.
    Chianella I, Piletsky SA, Tothill IE, Chen B, Turner APF (2003) MIP-based solid phase extraction cartridges combined with MIP-based sensors for the detection of microcystin-LR. Biosens Bioelectron 18:119–127PubMedCrossRefGoogle Scholar
  25. 25.
    Valero-Navarro A, Salinas-Castillo A, Fernández-Sánchez JF, Segura-Carretero A, Mallavia R, Fernández-Gutiérrez A (2009) The development of a MIP-optosensor for the detection of monoamine naphthalenes in drinking water. Biosens Bioelectron 24:2305–2311PubMedCrossRefGoogle Scholar
  26. 26.
    Farré M, Kantiani L, Pérez S, Barceló D (2009) Sensors and biosensors in support of EU directives. Trends Anal Chem 28:170–185CrossRefGoogle Scholar
  27. 27.
    Kriz D, Kempe M, Mosbach K (1996) Introduction of molecularly imprinted polymers as recognised elements in conductometric chemical sensors. Sens Actuators B Chem 33:178–181CrossRefGoogle Scholar
  28. 28.
    Nakamura H, Karube I (2003) Current research activity in biosensors. Anal Bioanal Chem 377:446–468PubMedCrossRefGoogle Scholar
  29. 29.
    Blanco-López MC, Lobo-Castañón MJ, Miranda-Ordieres AJ, Tuñón-Blanco P (2004) Electrochemical sensors based on molecularly imprinted polymers. Trends Anal Chem 23:36–48CrossRefGoogle Scholar
  30. 30.
    Jenik M, Seifner A, Krassnig S, Seidler K, Lieberzeit PA, Dickert FL, Jungbauer C (2009) Sensors for bioanalytes by imprinting—polymers mimicking both biological receptors and the corresponding bioparticles. Biosens Bioelectron 25:9–14PubMedCrossRefGoogle Scholar
  31. 31.
    Ramsden JJ (1994) Experimental methods for investigating protein adsorption kinetics at surfaces. Q Rev Biophys 27:41–105PubMedCrossRefGoogle Scholar
  32. 32.
    Lin TY, Hu CH, Chou TC (2004) Determination of albumin concentration by MIP-QCM sensor. Biosens Bioelectron 20:75–81PubMedCrossRefGoogle Scholar
  33. 33.
    Tai DF, Lin CY, Wu TZ, Chen LK (2005) Recognition of dengue virus protein using epitope-mediated molecularly imprinted film. Anal Chem 77:5140–5143PubMedCrossRefGoogle Scholar
  34. 34.
    Thoelen R, Vansweevelt R, Duchateau J, Horemans F, D’Haen J, Lutsen L, Vanderzande D, Ameloot M, VandeVen M, Cleij TJ, Wagner P (2008) A MIP-based impedimetric sensor for the detection of low-MW molecules. Biosens Bioelectron 23:913–918PubMedCrossRefGoogle Scholar
  35. 35.
    Yoshimi Y, Narimatsu A, Nakayama K, Sekine S, Hattori K, Sakai K (2009) Development of an enzyme-free glucose sensor using the gate effect of a molecularly imprinted polymer. J Artif Organs 12:264–270PubMedCrossRefGoogle Scholar
  36. 36.
    Ogiso M, Minoura N, Shinbo T, Shimizu T (2006) Detection of a specific DNA sequence by electrophoresis through a molecularly imprinted polymer. Biomaterials 27:4177–4182PubMedCrossRefGoogle Scholar
  37. 37.
    Wu N, Feng L, Tan Y, Hu J (2009) An optical reflected device using a molecularly imprinted polymer film sensor. Anal Chim Acta 653:103–108PubMedCrossRefGoogle Scholar
  38. 38.
    González GP, Hernando PF, Alegría JSD (2009) An optical sensor for the determination of digoxin in serum samples based on a molecularly imprinted polymer membrane. Anal Chim Acta 638:209–212CrossRefGoogle Scholar
  39. 39.
    Vaddiraju S, Tomazos I, Burgess DJ, Jain FC, Papadimitrakopoulos F (2010) Emerging synergy between nanotechnology and implantable biosensors: a review. Biosens Bioelectron 25:1553–1565PubMedCrossRefGoogle Scholar
  40. 40.
    Wang C, Javadi A, Ghaffari M, Gong S (2010) A pH-sensitive molecularly imprinted nanospheres/hydrogel composite as a coating for implantable biosensor. Biomaterials 31:4944–4951PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2013

Authors and Affiliations

  • Yi Ge
    • 1
  • Samir Akhtar
    • 1
  • Farhan Mirza
    • 1
  • Sergey Piletsky
    • 1
  • Shenqi Wang
    • 2
  • Dan Fei
    • 3
  1. 1.Cranfield HealthCranfield UniversityCranfieldUK
  2. 2.College of Life Science and Technology & Advanced Biomaterials and Tissue Engineering CenterHuazhong University of Science and TechnologyWuhanP.R. China
  3. 3.Leicester School of PharmacyDe Montfort UniversityLeicesterUK

Personalised recommendations