Skip to main content

Label-Free Affinity Biosensors Based on Electrochemical Impedance Spectroscopy

  • Protocol
  • First Online:
Microelectrode Biosensors

Part of the book series: Neuromethods ((NM,volume 80))

Abstract

There is an increasing interest in Electrochemical Impedance Spectroscopy (EIS) as the transducing method for label-free biosensors. This technique allows the direct detection of the affinity complex formation through the variation of the capacitance or that of the charge transfer resistance at the biofunctionalized electrode/biological liquid interface. This chapter will present the physical principles of EIS, the different designs of the micro/nanoelectrodes, the new ways for the elaboration of the recognition biofilm, the performances of detection of the different biotargets, and the perspectives for the in situ detection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Macdonald JR (1987) Impedance spectroscopy. Wiley, New York

    Google Scholar 

  2. Rubinstein I (1995) Physical electrochemistry. Dekker, New York

    Google Scholar 

  3. Krause S (2003) Encyclopedia of electrochemistry, vol 3. Instrumentation and electroanalytical chemistry. Wiley-VCH, Weinheim

    Google Scholar 

  4. Buck RP, Ciani S (1975) Electroanalytical chemistry of membranes. Crit Rev Anal Chem 5:323–420

    Article  CAS  Google Scholar 

  5. Malmgreen-Hansen B, Sorensen TS, Jensen JB, Henneberg M (1989) Electric impedance of cellulose acetate membranes and a composite membrane at different salt concentrations. J Colloid Interface Sci 130:359–385

    Article  Google Scholar 

  6. Canas A, Ariza MJ, Benavente J (2001) Characterization of active and porous sublayers of a composite reverse osmosis membrane by impedance spectroscopy, streaming and membrane potentials, salt diffusion and X-ray photoelectron spectroscopy measurements. J Memb Sci 183:135–146

    Article  CAS  Google Scholar 

  7. Lisdat F, Moritz W (1994) Investigation of polymer membranes for diffusion restriction in miniaturised reference sensors. Thin Solid Films 248:126–133

    Article  CAS  Google Scholar 

  8. Wiegand G, Arribas-Layton N, Hillebrandt H, Sackmann E, Wagner P (2002) Electrical properties of supported lipid bilayer membranes. J Phys Chem B 106:4245–4254

    Article  CAS  Google Scholar 

  9. Pejcic B, de Marco R (2006) Impedance spectroscopy: over 35 years of electrochemical sensor optimization. Electrochim Acta 51:6217–6229

    Article  CAS  Google Scholar 

  10. Wagner N (2002) Characterization of membrane electrode assemblies in polymer electrolyte fuel cells using a.c. impedance spectroscopy. J Appl Electrochem 32:859–863

    Article  CAS  Google Scholar 

  11. Himanen O, Hottinen T (2006) Characterization of membrane–electrode assembly with hydrogen–hydrogen cell and ac-impedance spectroscopy: Part II. Modeling. Electrochim Acta 52:581–588

    Article  CAS  Google Scholar 

  12. Agel E, Bouet J, Fauvarque JF (2001) Characterization and use of anionic membranes for alkaline fuel cells. J Power Sources 101:267–274

    Article  CAS  Google Scholar 

  13. Nagarale RK, Gohil GS, Shahi VK (2006) Recent developments on ion-exchange membranes and electro-membrane processes. Adv Colloid Interface Sci 119:97–130

    Article  PubMed  CAS  Google Scholar 

  14. Touzi H, Chevalier Y, Kalfat R, Ben Ouada H, Zarrouk H, Chapel JP, Jaffrezic-Renault N (2006) Elaboration and electrical characterization of silicone-based anion-exchange materials. Mater Sci Eng C 26:462–471

    Article  CAS  Google Scholar 

  15. Berggren C, Bjarnason B, Johansson G (2001) Capacitive biosensors. Electroanalysis 13:173–180

    Article  CAS  Google Scholar 

  16. Saby C, Jaffrezic-Renault N, Martelet C, Colin B, Charles MH, Delair T, Mandrand B (1993) Immobilization of antibodies onto a capacitance silicon-based transducer. Sens Actuators B 16:458–462

    Article  CAS  Google Scholar 

  17. Hays HCW, Millner PA, Prodromidis MI (2006) Development of capacitance based immunosensors on mixed self-assembled monolayers. Sens Actuators B 114:1064–1070

    Article  CAS  Google Scholar 

  18. Bart M, Stigter ECA, Stapert HR, de Jong GJ, van Bennekom WP (2005) On the response of a label-free interferon-γ immunosensor utilizing electrochemical impedance spectroscopy. Biosens Bioelectron 21:49–59

    Article  PubMed  CAS  Google Scholar 

  19. Hou Y, Jaffrezic-Renault N, Martelet C, Tlili C, Zhang A, Pernollet JC, Briand L, Gomila G, Errachid A, Samitier J, Salvagnac L, Torbiéro B, Temple-Boyer P (2005) Study of Langmuir and Langmuir-Blodgett films of odorant-binding protein/amphiphile for odorant biosensor. Langmuir 21:4058–4065

    Article  PubMed  CAS  Google Scholar 

  20. Knichel M, Heiduschka P, Beck W, Jung G, Gopel W (1995) Utilization of a self-assembled peptide monolayer for an impedimetric immunosensor. Sens Actuators B 28:85

    Article  Google Scholar 

  21. Rickert R, Gopel W, Beck W, Jung G, Heiduschka P (1996) A ‘mixed’ self-assembled monolayer for an impedimetric immunosensor. Biosens Bioelectron 11:757–768

    Article  PubMed  CAS  Google Scholar 

  22. Taira H, Nakano K, Maeda M, Takagi M (1993) Electrode modification by long-chain, dialkyl disulfide reagent having terminal dinitrophenyl group and its application to impedimetric immunosensors. Anal Sci 9:199–206

    Article  CAS  Google Scholar 

  23. Ameur S, Martelet C, Jaffrezic-Renault N, Chovelon JM (2000) Sensitive immunodetection through impedance measurements onto gold functionalized electrodes. Appl Biochem Biotechnol 89:161–170

    Article  PubMed  CAS  Google Scholar 

  24. Sadik OA, Xu H, Gheorghiu E, Andreescu D, Balut C, Gheorghiu M, Bratu D (2002) Differential impedance spectroscopy for monitoring protein immobilization and antibody−antigen reactions. Anal Chem 74:3142–3150

    Article  PubMed  CAS  Google Scholar 

  25. Ameur S, Maupas H, Martelet C, Jaffrezic-Renault N, Ben Ouada H, Cosnier S, Labbe P (1997) Impedimetric measurements on polarized functionalized platinum electrodes: application to direct immunosensing. Mater Sci Eng C 5:111–119

    Article  Google Scholar 

  26. Maupas H, Soldatkin AP, Martelet C, Jaffrezic-Renault N, Mandrand B (1997) Direct immunosensing using differential electrochemical measurements of impedimetric variations. J Electroanal Chem 421:165–171

    Article  CAS  Google Scholar 

  27. Gebbert A, Alvarezicaza M, Peters H, Jager V, Bilitewski U, Schmid RD (1994) On-line monitoring of monoclonal antibody production with regenerable flow-injection immuno systems. J Biotechnol 32:213–220

    Article  PubMed  CAS  Google Scholar 

  28. Gebbert A, Alvarezicaza M, Stocklein W, Schmid RD (1992) Real-time monitoring of immunochemical interactions with a tantalum capacitance flow-through cell. Anal Chem 64:997–1003

    Article  CAS  Google Scholar 

  29. Varlan AR, Suls J, Sansen W, Veelaert D, de Loof A (1997) Capacitive sensor for the allatostatin direct immunoassay. Sens Actuators B 44:334–340

    Article  Google Scholar 

  30. Bain CD, Troughton EB, Tao YT, Evall J, Whitesides GM, Nuzzo RG (1989) Formation of monolayer films by the spontaneous assembly of organic thiols from solution onto gold. J Am Chem Soc 111:321–335

    Article  CAS  Google Scholar 

  31. Anderson JL, Bowden EF, Pickup PG (1996) Dynamic electrochemistry: methodology and application. Anal Chem 68:R379–R444

    Article  Google Scholar 

  32. Mirsky VM, Riepl M, Wolfbeis OS (1997) Capacitive monitoring of protein immobilization and antigen–antibody reactions on monomolecular alkylthiol films on gold electrodes. Biosens Bioelectron 12:977–989

    Article  PubMed  CAS  Google Scholar 

  33. Wink T, Zuilen SJ, Bult A, van Bennekom WP (1997) Self-assembled monolayers for biosensors. Analyst 122:43R–50R

    Article  PubMed  CAS  Google Scholar 

  34. Prodromidis MI, Hirsch T, Mirsky VM, Wolfbeis OS (2003) Enantioselective artificial receptors formed by the spreader-bar technique. Electroanalysis 15:1795–1798

    Article  CAS  Google Scholar 

  35. Mirsky VM (2002) New electroanalytical applications of self-assembled monolayers. Trends Anal Chem 21:439–450

    Article  CAS  Google Scholar 

  36. Barraud A, Perrot H, Billard V, Martelet C, Therasse J (1993) Study of immunoglobulin G thin layers obtained by the Langmuir-Blodgett method: application to immunosensors. Biosens Bioelectron 8:39–48

    Article  PubMed  CAS  Google Scholar 

  37. Wang LG, Li YH, Tien HT (1995) Electrochemical transduction of an immunological reaction via s-BLMs. Bioelectrochem Bioenerg 36:145–147

    Article  CAS  Google Scholar 

  38. Cassier T, Lowack K, Decher G (1998) Layer-by-layer assembled protein/polymer hybrid films: nanoconstruction via specific recognition. Supramol Sci 5:309–315

    Article  CAS  Google Scholar 

  39. Calvo EJ, Battaglini F, Danilowicz C, Wolosiuk A, Otero M (2000) Layer-by-layer electrostatic deposition of biomolecules on surfaces for molecular recognition, redox mediation and signal generation. Faraday Discuss 116:47–65

    Article  PubMed  CAS  Google Scholar 

  40. Berggren C, Bjarnason B, Johansson G (1998) An immunological Interleukine-6 capacitive biosensor using perturbation with a potentiostatic step. Biosens Bioelectron 13:1061–1068

    Article  PubMed  CAS  Google Scholar 

  41. Bataillard P, Gardies F, Jaffrezic-Renault N, Martelet C, Colin B, Mandrand B (1988) Direct detection of immunospecies by capacitance measurements. Anal Chem 60:2374–2379

    Article  PubMed  CAS  Google Scholar 

  42. Berggren C, Johansson G (1997) Capacitance measurements of antibody−antigen interactions in a flow system. Anal Chem 69:3651–3657

    Article  PubMed  CAS  Google Scholar 

  43. Hou YX, Tlili C, Jaffrezic-Renault N, Zhang AD, Martelet C, Ponsonnet L, Errachid A, Samitier J, Bausells J (2004) Study of mixed Langmuir–Blodgett films of immunoglobulin G/amphiphile and their application for immunosensor engineering. Biosens Bioelectron 20:1126–1133

    Article  PubMed  CAS  Google Scholar 

  44. Hleli S, Martelet C, Abdelghani A, Burais N, Jaffrezic-Renault N (2006) Atrazine analysis using an impedimetric immunosensor based on mixed biotinylated self-assembled monolayer. Sens Actuators B 113:711–717

    Article  CAS  Google Scholar 

  45. Jie M, Ming CY, Jing D, Cheng LS, Na LH, Jun F, Xiang CY (1999) An electrochemical impedance immunoanalytical method for detecting immunological interaction of human mammary tumor associated glycoprotein and its monoclonal antibody. Electrochem Commun 1:425–428

    Article  Google Scholar 

  46. Bourigua S, Hnaien M, Bessueille F, Lagarde F, Dzyadevych S, Maaref A, Bausells J, Errachid A, Jaffrezic-Renault N (2010) Impedimetric immunosensor based on SWCNT-COOH modified gold microelectrodes for label-free detection of deep venous thrombosis biomarker. Biosens Bioelectron 26:1278–1282

    Article  PubMed  CAS  Google Scholar 

  47. Pak SC, Penrose W, Hesketh PJ (2001) An ultrathin platinum film sensor to measure biomolecular binding. Biosens Bioelectron 16:371–379

    Article  PubMed  CAS  Google Scholar 

  48. Woodhouse GE, King LG, Wieczorek L, Cornell BA (1998) Kinetics of the competitive response of receptors immobilised to ion-channels which have been incorporated into a tethered bilayer. Faraday Discuss 111:247–258

    Article  PubMed  CAS  Google Scholar 

  49. Sargent A, Loi T, Gal S, Sadik OA (1999) The electrochemistry of antibody-modified conducting polymer electrodes. J Electroanal Chem 470:144–156

    Article  CAS  Google Scholar 

  50. Ouerghi O, Senillou A, Jaffrezic-Renault N, Martelet C, Ben Ouada H, Cosnier S (2001) Gold electrode functionalized by electropolymerization of a cyano N-substituted pyrrole: application to an impedimetric immunosensor. J Electroanal Chem 501:62–69

    Article  CAS  Google Scholar 

  51. Hafaid I, Chebil S, Korri-Youssoufi H, Bessueille F, Errachid A, Sassi Z, Ali Z, Abdelghani A, Jaffrezic-Renault N (2010) Effect of electrical conditions on an impedimetric immunosensor based on a modified conducting polypyrrole. Sens Actuators B 144:323–331

    Article  CAS  Google Scholar 

  52. Ouerghi O, Touhami A, Jaffrezic-Renault N, Martelet C, Ben Ouada H, Cosnier S (2002) Impedimetric immunosensor using avidin–biotin for antibody immobilization. Bioelectrochemistry 56:131–133

    Article  PubMed  CAS  Google Scholar 

  53. Hason S, Dvorak J, Jelen F, Vetterl V (2002) Interaction of DNA with echinomycin at the mercury electrode surface as detected by impedance and chronopotentiometric measurements. Talanta 56:905–913

    Article  PubMed  CAS  Google Scholar 

  54. Strasak L, Dvorak J, Hason S, Vetterl V (2002) Electrochemical impedance spectroscopy of polynucleotide adsorption. Bioelectrochemistry 56:37–41

    Article  PubMed  CAS  Google Scholar 

  55. Kelley SO, Boon EM, Barton JK, Jackson NM, Hill MG (1999) Single-base mismatch detection based on charge transduction through DNA. Nucleic Acids Res 27:4830–4837

    Article  PubMed  CAS  Google Scholar 

  56. Fojta M, Havran L, Billova S, Kostecka P, Masarik M, Kizek R (2003) Two-surface strategy in electrochemical DNA hybridization assays: detection of osmium-labeled target DNA at carbon electrodes. Electroanalysis 15:431–440

    Article  CAS  Google Scholar 

  57. Hashimoto K, Ito K, Ishimore Y (1994) Novel DNA sensor for electrochemical gene detection. Anal Chim Acta 286:219–224

    Article  CAS  Google Scholar 

  58. Pänke O, Kirbs A, Lisdat F (2007) Voltammetric detection of single base-pair mismatches and quantification of label-free target ssDNA using a competitive binding assay. Biosens Bioelectron 22:2656–2662

    Article  PubMed  CAS  Google Scholar 

  59. Zhao YD, Pang DW, Hu S, Wang ZL, Cheng JK, Qi YP, Dai HP, Mao BW, Tian ZQ, Luo J, Lin ZH (1999) DNA-modified electrodes. Part 3: Spectroscopic characterization of DNA-modified gold electrodes. Anal Chim Acta 388:93–101

    Article  CAS  Google Scholar 

  60. Kafka J, Pänke O, Abendroth B, Lisdat F (2008) A label-free DNA sensor based on impedance spectroscopy. Electrochim Acta 53:7467–7474

    Article  CAS  Google Scholar 

  61. Korri-Youssoufi H, Garnier F, Srivtava P, Godillot P, Yassar A (1997) Toward bioelectronics: specific DNA recognition based on an oligonucleotide-functionalized polypyrrole. J Am Chem Soc 119:7388–7389

    Article  CAS  Google Scholar 

  62. Li CM, Sun CQ, Song S, Choong VE, Maracas G, Zhang XJ (2005) Impedance labelless detection-based polypyrrole DNA biosensor. Front Biosci 10:180–186

    Article  PubMed  CAS  Google Scholar 

  63. Wang J, Jiang M, Fortes A, Mukherjee B (1999) New label-free DNA recognition based on doping nucleic-acid probes within conducting polymer films. Anal Chim Acta 402:7–12

    Article  CAS  Google Scholar 

  64. Tlili C, Korri-Youssoufi H, Ponsonnet L, Martelet C, Jaffrezic-Renault N (2005) Electrochemical impedance probing of DNA hybridisation on oligonucleotide functionalised polypyrrole. Talanta 68:131–137

    Article  PubMed  CAS  Google Scholar 

  65. Peng H, Soeller C, Cannell MB, Bowmaker GA, Cooney RP, Travas-Seijdic J (2006) Electrochemical detection of DNA hybridization amplified by nanoparticles. Biosens Bioelectron 21:1727–1736

    Article  PubMed  CAS  Google Scholar 

  66. Piro B, Haccoun J, Pham MC, Tran LD, Rubin A, Perrot H, Gabrielli C (2005) Study of the DNA hybridization transduction behavior of a quinone-containing electroactive polymer by cyclic voltammetry and electrochemical impedance spectroscopy. J Electroanal Chem 577:155–165

    Article  CAS  Google Scholar 

  67. Gautier C, Cougnon C, Pilard JF, Casse N (2006) Label-free detection of DNA hybridization based on EIS investigation of conducting properties of functionalized polythiophene matrix. J Electroanal Chem 587:276–283

    Article  CAS  Google Scholar 

  68. Yan F, Sadik OA (2001) Enzyme-modulated cleavage of dsDNA for supramolecular design of biosensors. Anal Chem 73:5272–5280

    Article  PubMed  CAS  Google Scholar 

  69. Li CZ, Liu YL, Luong JHT (2005) Impedance sensing of DNA binding drugs using gold substrates modified with gold nanoparticles. Anal Chem 77:478–485

    Article  PubMed  CAS  Google Scholar 

  70. Li CZ, Long YT, Lee JS, Kraatz HB (2004) Protein–DNA interaction: impedance study of MutS binding to a DNA mismatch. Chem Commun 5:574–575

    Article  CAS  Google Scholar 

  71. Liu XY, Li CY, Wang CF, Li T, Hu SS (2006) The preparation of molecularly imprinted poly(o-phenylenediamine) membranes for the specific O, O-dimethyl-α-hydroxylphenyl phosphonate sensor and its characterization by AC impedance and cyclic voltammetry. J Appl Polym Sci 101:2222–2227

    Article  CAS  Google Scholar 

  72. Hayden O, Lieberzeit PA, Blaas D, Dickert FL (2006) Artificial antibodies for bioanalyte detection—sensing viruses and proteins. Adv Funct Mater 16:1269–1278

    Article  CAS  Google Scholar 

  73. Dickert FL, Hayden O, Lieberzeit PA, Haderspoeck C, Bindeus R, Palfinger C, Wirl B (2003) Nano- and micro-structuring of sensor materials—from molecule to cell detection. Synth Metal 138:65–69

    Article  CAS  Google Scholar 

  74. Shervedani RK, Mehrjardi AH, Zamiri N (2006) A novel method for glucose determination based on electrochemical impedance spectroscopy using glucose oxidase self-assembled biosensor. Bioelectrochemistry 69:201–208

    Article  PubMed  CAS  Google Scholar 

  75. Barhoumi H, Maaref A, Rammah M, Martelet C, Jaffrezic N, Mousty C, Vial S, Forano C (2006) Urea biosensor based on Zn3Al–Urease layered double hydroxides nanohybrid coated on insulated silicon structures. Mater Sci Eng C 26:328–333

    Article  CAS  Google Scholar 

  76. Ye JS, Ottova A, Tien HT, Sheu FS (2003) Nanostructured platinum-lipid bilayer composite as biosensor. Bioelectrochemistry 59:65–72

    Article  PubMed  CAS  Google Scholar 

  77. Jeuken LJC, Connell SD, Henderson PJF, Gennis RB, Evans SD, Bushby RJ (2006) Redox enzymes in tethered membranes. J Am Chem Soc 128:1711–1716

    Article  PubMed  CAS  Google Scholar 

  78. Naumann R, Schmidt EK, Jonczyk A, Fendler K, Kadenbach B, Liebermann T, Offenhausser A, Knoll W (1999) The peptide-tethered lipid membrane as a biomimetic system to incorporate cytochrome c oxidase in a functionally active form. Biosens Bioelectron 14:651–662

    Article  CAS  Google Scholar 

  79. Schasfoort RBM, Niedziela T (1994) Detection of inhibitory compounds of acetylcholine esterase with a novel ion responding impedance sensor (IRIS). Sens Actuators B 18:175–177

    Article  CAS  Google Scholar 

  80. Benilova IV, Soldatkin AP, Martelet C, Jaffrezic-Renault N (2006) Nonfaradaic impedance probing of potato glycoalkaloids interaction with butyrylcholinesterase immobilized onto gold electrode. Electroanalysis 18(19–20):1950–1956

    Article  CAS  Google Scholar 

  81. Bouyahia N, Hamlaoui ML, Hnaien M, Lagarde F, Jaffrezic-Renault N (2011) Impedance spectroscopy and conductometric biosensing for probing catalase reaction with cyanide as ligand and inhibitor. Bioelectrochemistry 80:155–161

    Article  PubMed  CAS  Google Scholar 

  82. Tong YH, Han XJ, Song YH, Jiang JG, Wang EK (2003) Characterization and property of DNA incorporated bilayer lipid membranes. Biophys Chem 105:1–9

    Article  PubMed  CAS  Google Scholar 

  83. Wilkop T, Xu DK, Cheng Q (2007) Characterization of pore formation by streptolysin O on supported lipid membranes by impedance spectroscopy and surface plasmon resonance spectroscopy. Langmuir 23:1403–1409

    Article  PubMed  CAS  Google Scholar 

  84. McNeil CJ, Athey D, Ball M, Ho WO, Krause S, Armstrong RD, Wright JD, Rawson K (1995) Electrochemical sensors based on impedance measurement of enzyme-catalyzed polymer dissolution: theory and applications. Anal Chem 67:3928–3935

    Article  CAS  Google Scholar 

  85. Gooding JJ, Hall EA (1996) Membrane properties of acrylate bulk polymers for biosensor applications. Biosens Bioelectron 11:1031–1040

    Article  CAS  Google Scholar 

  86. Sumner C, Krause S, Sabot A, Turner K, McNeil CJ (2001) Biosensor based on enzyme-catalysed degradation of thin polymer films. Biosens Bioelectron 16:709–714

    Article  PubMed  CAS  Google Scholar 

  87. Hug TS (2003) Biophysical methods for monitoring cell-substrate interactions in drug discovery. Assay Drug Dev Technol 1:479–488

    Article  PubMed  CAS  Google Scholar 

  88. Yotter RA, Wilson DM (2004) Sensor technologies for monitoring metabolic activity in single cells. Part II: Nonoptical methods and applications. IEEE Sens J 4:412–429

    Article  CAS  Google Scholar 

  89. Yeon JH, Park JK (2005) Cytotoxicity test based on electrochemical impedance measurement of HepG2 cultured in microfabricated cell chip. Anal Biochem 341:308–315

    Article  PubMed  CAS  Google Scholar 

  90. Xiao C, Luong JHT (2003) On-line monitoring of cell growth and cytotoxicity using electric cell-substrate impedance sensing (ECIS). Biotechnol Prog 19:1000–1005

    Article  PubMed  CAS  Google Scholar 

  91. K’Owino IO, Sadik OA (2005) Impedance spectroscopy: a powerful tool for rapid biomolecular screening and cell culture monitoring. Electroanalysis 17:2101–2113

    Article  CAS  Google Scholar 

  92. Kyle AH, Chan CTO, Minchinton AI (1999) Characterization of three-dimensional tissue cultures using electrical impedance spectroscopy. Biophys J 76:2640–2648

    Article  PubMed  CAS  Google Scholar 

  93. Bouafsoun A, Helali S, Othmane A, Kerkeni A, Prigent AF, Jaffrezic-Renault N, Bessueille F, Leonard D, Ponsonnet L (2007) Evaluation of endothelial cell adhesion onto different protein/gold electrodes by EIS. Macromol Biosci 7:599–610

    Article  PubMed  CAS  Google Scholar 

  94. Maalouf R, Fournier-Wirth C, Coste J, Chebib H, Saikali Y, Vittori O, Errachid A, Cloarec JP, Martelet C, Jaffrezic-Renault N (2007) Label-free detection of bacteria by electrochemical impedance spectroscopy: comparison to surface plasmon resonance. Anal Chem 79:4879–4886

    Article  PubMed  CAS  Google Scholar 

  95. Shabani A, Zourob M, Allain B, Marquette CA, Laurence MF, Mandeville R (2008) Bacteriophage-modified microarrays for the direct impedimetric detection of bacteria. Anal Chem 80:9475–9482

    Article  PubMed  CAS  Google Scholar 

  96. Jonsson M, Welch K, Hamp S, Stromme M (2006) Bacteria counting with impedance spectroscopy in a micro probe station. J Phys Chem B 110:10165–10169

    Article  PubMed  CAS  Google Scholar 

  97. Cheung K, Gawad S, Renaud P (2005) Impedance spectroscopy flow cytometry: on-chip label-free cell differentiation. Cytometry A 65A:124–132

    Article  CAS  Google Scholar 

  98. van Gerwen P, Laureyn W, Laureys W, Huyberechts G, de Beeck MO, Baert K, Suls J, Sansen W, Jacobs P, Hermans L, Mertens R (1998) Nanoscaled interdigitated electrode arrays for biochemical sensors. Sens Actuators B 49:73–80

    Article  Google Scholar 

  99. Laureyn W, Nelis D, van Gerwen P, Baert K, Hermans L, Magnee R, Pireaux JJ, Maes G (2000) Nanoscaled interdigitated titanium electrodes for impedimetric biosensing. Sens Actuators B 68:360–370

    Article  Google Scholar 

  100. Gheorghe M, Guiseppi-Elie A (2003) Electrical frequency dependent characterization of DNA hybridization. Biosens Bioelectron 19:95–102

    Article  PubMed  CAS  Google Scholar 

  101. Dharuman V, Grunwald I, Nebling E, Albers J, Blohm L, Hintsche R (2005) Label-free impedance detection of oligonucleotide hybridisation on interdigitated ultramicroelectrodes using electrochemical redox probes. Biosens Bioelectron 21:645–654

    Article  PubMed  CAS  Google Scholar 

  102. Taylor RF, Marenchic IG, Spencer RH (1991) Antibody- and receptor-based biosensors for detection and process control. Anal Chim Acta 249:67–70

    Article  CAS  Google Scholar 

  103. Hnaien M, Hassen WM, Abdelghani A, Fournier-Wirth C, Coste J, Bessueille F, Leonard D, Jaffrezic-Renault N (2008) A conductometric immunosensor based on functionalized magnetite nanoparticles for E. coli detection. Electrochem Commun 10:1152–1154

    Article  CAS  Google Scholar 

  104. Hang TC, Elie AG (2004) Frequency dependent and surface characterization of DNA immobilization and hybridization. Biosens Bioelectron 19:1537–1548

    Article  PubMed  CAS  Google Scholar 

  105. Eldefrawi ME, Sherby SM, Andreou AG, Mansour NA, Annau Z, Blum NA, Valdes JJ (1988) Acetylcholine receptor-based biosensor. Anal Lett 21:1665–1680

    Article  CAS  Google Scholar 

  106. Jaffrezic-Renault N, Dzyadevych SV (2008) Conductometric microbiosensors for environmental monitoring. Sensors 8:2569–2588

    Article  Google Scholar 

  107. Saum AEG, Cumming RH, Rowell FJ (1998) Use of substrate coated electrodes and AC impedance spectroscopy for the detection of enzyme activity. Biosens Bioelectron 13:511–518

    Article  CAS  Google Scholar 

  108. Sheppard NF, Mears DJ, Guiseppi-Elie A (1996) Model of an immobilized enzyme conductimetric urea biosensor. Biosens Bioelectron 11:967–979

    Article  CAS  Google Scholar 

  109. Ho WO, Krause S, McNeil CJ, Pritchard JA, Armstrong RD, Athey D, Rawson K (1999) Electrochemical sensor for measurement of urea and creatinine in serum based on ac impedance measurement of enzyme-catalyzed polymer transformation. Anal Chem 71:1940–1946

    Article  PubMed  CAS  Google Scholar 

  110. Montelius L, Tegenfeldt JO, Ling TGI (1995) Fabrication and characterization of a nanosensor for admittance spectroscopy of biomolecules. J Vac Sci Technol A 13:1755–1760

    Article  CAS  Google Scholar 

  111. Jaffrezic-Renault N, Errachid A (2010) Analytical microsystems for biomedical and environmental applications. In: Mascini M, Torbicz W, Pijanowska DG (eds) Lecture notes of the ICB seminar “Micro- and nanosystems in biochemical diagnosis. Principles and applications”. Polish Academy of Sciences, Warsaw, pp 40–52

    Google Scholar 

  112. http://www.diagnosingdvt.com

  113. Shedden L, Kennedy S, Connolly P, Wadsworth R (2010) Towards a self-reporting coronary artery stent – measuring neointimal growth associated with in-stent restenosis using impedance techniques. Biosens Bioelectron 26:661–666

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Jaffrezic-Renault, N. (2013). Label-Free Affinity Biosensors Based on Electrochemical Impedance Spectroscopy. In: Marinesco, S., Dale, N. (eds) Microelectrode Biosensors. Neuromethods, vol 80. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-370-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-370-1_14

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-369-5

  • Online ISBN: 978-1-62703-370-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics