Skip to main content

Forebrain Cholinergic Systems and Cognition: New Insights Based on Rapid Detection of Choline Spikes Using Enzyme-Based Biosensors

  • Protocol
  • First Online:
Microelectrode Biosensors

Part of the book series: Neuromethods ((NM,volume 80))

Abstract

Changes in acetylcholine (ACh) release in the forebrain represent a critical step in the activation of larger neuronal circuits mediating cognitive functions. Therefore, the development of methods which allow the assessment of ACh release at a high temporal and spatial resolution is of immense significance for behavioral and cognitive neuroscience research. In this chapter, we review evidence from in vivo studies utilizing choline-sensitive microelectrodes for the detection of rapid changes in extracellular choline levels as a spatially discrete and sensitive measure of cortical cholinergic transmission. We then summarize empirical data from our lab based on studies involving electrochemical recordings and real-time monitoring of ACh release in animals performing a cued-appetitive response task. Phasic cholinergic activation in the prefrontal cortex, demonstrated by second-based increases in cholinergic transmission during behaviorally significant cues triggering reward approach, suggests that cholinergic transients encode specific information pertaining to the detection of attention-demanding cues. These findings indicate that cortical cholinergic transmission mediates defined cognitive operations which are contrary to the traditional description of cortical ACh as a slowly acting neuromodulator influencing different arousal states.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chiba AA, Bucci DJ, Holland PC, Gallagher M (1995) Basal forebrain cholinergic lesions disrupt increments but not decrements in conditioned stimulus processing. J Neurosci 15:7315–7322

    PubMed  CAS  Google Scholar 

  2. Dalley JW, Theobald DE, Bouger P, Chudasama Y, Cardinal RN, Robbins TW (2004) Cortical cholinergic function and deficits in visual attentional performance in rats following 192 IgG-saporin-induced lesions of the medial prefrontal cortex. Cereb Cortex 14:922–932

    Article  PubMed  Google Scholar 

  3. McGaughy J, Dalley JW, Morrison CH, Everitt BJ, Robbins TW (2002) Selective behavioral and neurochemical effects of cholinergic lesions produced by intrabasalis infusions of 192 IgG-saporin on attentional performance in a five-choice serial reaction time task. J Neurosci 22:1905–1913

    PubMed  CAS  Google Scholar 

  4. McGaughy J, Everitt BJ, Robbins TW, Sarter M (2000) The role of cortical cholinergic afferent projections in cognition: impact of new selective immunotoxins. Behav Brain Res 115:251–263

    Article  PubMed  CAS  Google Scholar 

  5. McGaughy J, Kaiser T, Sarter M (1996) Behavioral vigilance following infusions of 192 IgG-saporin into the basal forebrain: selectivity of the behavioral impairment and relation to cortical AChE-positive fiber density. Behav Neurosci 110:247–265

    Article  PubMed  CAS  Google Scholar 

  6. Muir JL, Dunnett SB, Robbins TW, Everitt BJ (1992) Attentional functions of the forebrain cholinergic systems: effects of intraventricular hemicholinium, physostigmine, basal forebrain lesions and intracortical grafts on a multiple-choice serial reaction time task. Exp Brain Res 89:611–622

    Article  PubMed  CAS  Google Scholar 

  7. Phillis JW (1968) Acetylcholine release from the cerebral cortex: its role in cortical arousal. Brain Res 7:378–389

    Article  PubMed  CAS  Google Scholar 

  8. Bartolini A, Pepeu G (1967) Investigations into the acetylcholine output from the cerebral cortex of the cat in the presence of hyoscine. Br J Pharmacol Chemother 31:66–73

    Article  PubMed  CAS  Google Scholar 

  9. Szerb JC (1967) Cortical acetylcholine release and electroencephalographic arousal. J Physiol 192:329–343

    PubMed  CAS  Google Scholar 

  10. Pepeu G, Mantegazzini P (1964) Midbrain hemisection: effect on cortical acetylcholine in the cat. Science 145:1069–1070

    Article  PubMed  CAS  Google Scholar 

  11. Westerink BH, Cremers TI (2007) Handbook of microdialysis: methods, applications and perspectives, vol 16. Academic, London

    Google Scholar 

  12. Arnold HM, Burk JA, Hodgson EM, Sarter M, Bruno JP (2002) Differential cortical acetylcholine release in rats performing a sustained attention task versus behavioral control tasks that do not explicitly tax attention. Neuroscience 114:451–460

    Article  PubMed  CAS  Google Scholar 

  13. Dalley JW, McGaughy J, O’Connell MT, Cardinal RN, Levita L, Robbins TW (2001) Distinct changes in cortical acetylcholine and noradrenaline efflux during contingent and noncontingent performance of a visual attentional task. J Neurosci 21:4908–4914

    PubMed  CAS  Google Scholar 

  14. Passetti F, Dalley JW, O’Connell MT, Everitt BJ, Robbins TW (2000) Increased acetylcholine release in the rat medial prefrontal cortex during performance of a visual attentional task. Eur J Neurosci 12:3051–3058

    Article  PubMed  CAS  Google Scholar 

  15. Cahill PS, Walker QD, Finnegan JM, Mickelson GE, Travis ER, Wightman RM (1996) Microelectrodes for the measurement of catecholamines in biological systems. Anal Chem 68:3180–3186

    Article  PubMed  CAS  Google Scholar 

  16. Michael DJ, Wightman RM (1999) Electrochemical monitoring of biogenic amine neurotransmission in real time. J Pharm Biomed Anal 19:33–46

    Article  PubMed  CAS  Google Scholar 

  17. Wightman RM, Robinson DL (2002) Transient changes in mesolimbic dopamine and their association with ‘reward’. J Neurochem 82:721–735

    Article  PubMed  CAS  Google Scholar 

  18. Phillips PE, Stuber GD, Heien ML, Wightman RM, Carelli RM (2003) Subsecond dopamine release promotes cocaine seeking. Nature 422:614–618

    Article  PubMed  CAS  Google Scholar 

  19. Daws LC, Toney GM, Gerhardt GA, Frazer A (1998) In vivo chronoamperometric measures of extracellular serotonin clearance in rat dorsal hippocampus: contribution of serotonin and norepinephrine transporters. J Pharmacol Exp Ther 286:967–976

    PubMed  CAS  Google Scholar 

  20. Zahniser NR, Larson GA, Gerhardt GA (1999) In vivo dopamine clearance rate in rat striatum: regulation by extracellular dopamine concentration and dopamine transporter inhibitors. J Pharmacol Exp Ther 289:266–277

    PubMed  CAS  Google Scholar 

  21. Staal RG, Mosharov EV, Sulzer D (2004) Dopamine neurons release transmitter via a flickering fusion pore. Nat Neurosci 7:341–346

    Article  PubMed  CAS  Google Scholar 

  22. Burmeister JJ, Pomerleau F, Palmer M, Day BK, Huettl P, Gerhardt GA (2002) Improved ceramic-based multisite microelectrode for rapid measurements of L-glutamate in the CNS. J Neurosci Methods 119:163–171

    Article  PubMed  CAS  Google Scholar 

  23. Pomerleau F, Day BK, Huettl P, Burmeister JJ, Gerhardt GA (2003) Real time in vivo measures of L-glutamate in the rat central nervous system using ceramic-based multisite microelectrode arrays. Ann NY Acad Sci 1003:454–457

    Article  PubMed  CAS  Google Scholar 

  24. Burmeister JJ, Palmer M, Gerhardt GA (2005) L-lactate measures in brain tissue with ceramic-based multisite microelectrodes. Biosens Bioelectron 20:1772–1779

    Article  PubMed  CAS  Google Scholar 

  25. Burmeister JJ, Gerhardt GA (2001) Self-referencing ceramic-based multisite microelectrodes for the detection and elimination of interferences from the measurement of L-glutamate and other analytes. Anal Chem 73:1037–1042

    Article  PubMed  CAS  Google Scholar 

  26. Burmeister JJ, Moxon K, Gerhardt GA (2000) Ceramic-based multisite microelectrodes for electrochemical recordings. Anal Chem 72:187–192

    Article  PubMed  CAS  Google Scholar 

  27. Garguilo MG, Michael AC (1996) Amperometric microsensors for monitoring choline in the extracellular fluid of brain. J Neurosci Methods 70:73–82

    Article  PubMed  CAS  Google Scholar 

  28. Oldenziel WH, Dijkstra G, Cremers TI, Westerink BH (2006) In vivo monitoring of extracellular glutamate in the brain with a microsensor. Brain Res 1118:34–42

    Article  PubMed  CAS  Google Scholar 

  29. Oldenziel WH, van der Zeyden M, Dijkstra G, Ghijsen WE, Karst H, Cremers TI, Westerink BH (2007) Monitoring extracellular glutamate in hippocampal slices with a microsensor. J Neurosci Methods 160:37–44

    Article  PubMed  CAS  Google Scholar 

  30. Day BK, Pomerleau F, Burmeister JJ, Huettl P, Gerhardt GA (2006) Microelectrode array studies of basal and potassium-evoked release of L-glutamate in the anesthetized rat brain. J Neurochem 96:1626–1635

    Article  PubMed  CAS  Google Scholar 

  31. Burmeister JJ, Pomerleau F, Huettl P, Gash CR, Werner CE, Bruno JP, Gerhardt GA (2008) Ceramic-based multisite microelectrode arrays for simultaneous measures of choline and acetylcholine in CNS. Biosens Bioelectron 23:1382–1389

    Article  PubMed  CAS  Google Scholar 

  32. Xin Q, Wightman RM (1997) Transport of choline in rat brain slices. Brain Res 776:126–132

    Article  PubMed  CAS  Google Scholar 

  33. Garguilo MG, Michael AC (1994) Quantitation of choline in the extracellular fluid of brain tissue with amperometric microsensors. Anal Chem 66:2621–2629

    Article  PubMed  CAS  Google Scholar 

  34. Burmeister JJ, Palmer M, Gerhardt GA (2003) Ceramic-based multisite microelectrode array for rapid choline measures in brain tissue. Anal Chim Acta 481:65–74

    Article  CAS  Google Scholar 

  35. Parikh V, Pomerleau F, Huettl P, Gerhardt GA, Sarter M, Bruno JP (2004) Rapid assessment of in vivo cholinergic transmission by amperometric detection of changes in extracellular choline levels. Eur J Neurosci 20:1545–1554

    Article  PubMed  Google Scholar 

  36. Parikh V, Man K, Decker MW, Sarter M (2008) Glutamatergic contributions to nicotinic acetylcholine receptor agonist-evoked cholinergic transients in the prefrontal cortex. J Neurosci 28:3769–3780

    Article  PubMed  CAS  Google Scholar 

  37. Parikh V, Ji J, Decker MW, Sarter M (2010) Prefrontal beta2 subunit-containing and alpha7 nicotinic acetylcholine receptors differentially control glutamatergic and cholinergic signaling. J Neurosci 30:3518–3530

    Article  PubMed  CAS  Google Scholar 

  38. Parikh V, Sarter M (2006) Cortical choline transporter function measured in vivo using choline-sensitive microelectrodes: clearance of endogenous and exogenous choline and effects of removal of cholinergic terminals. J Neurochem 97:488–503

    Article  PubMed  CAS  Google Scholar 

  39. Rutherford EC, Pomerleau F, Huettl P, Stromberg I, Gerhardt GA (2007) Chronic second-by-second measures of L-glutamate in the central nervous system of freely moving rats. J Neurochem 102:712–722

    Article  PubMed  CAS  Google Scholar 

  40. Mitchell KM (2004) Acetylcholine and choline amperometric enzyme sensors characterized in vitro and in vivo. Anal Chem 76:1098–1106

    Article  PubMed  CAS  Google Scholar 

  41. Bruno JP, Gash C, Martin B, Zmarowski A, Pomerleau F, Burmeister J, Huettl P, Gerhardt GA (2006) Second-by-second measurement of acetylcholine release in prefrontal cortex. Eur J Neurosci 24:2749–2757

    Article  PubMed  Google Scholar 

  42. Giuliano C, Parikh V, Ward JR, Chiamulera C, Sarter M (2008) Increases in cholinergic neurotransmission measured by using choline-sensitive microelectrodes: enhanced detection by hydrolysis of acetylcholine on recording sites? Neurochem Int 52:1343–1350

    Article  PubMed  CAS  Google Scholar 

  43. Sarter M, Parikh V, Howe WM (2009) Phasic acetylcholine release and the volume transmission hypothesis: time to move on. Nat Rev Neurosci 10:383–390

    Article  PubMed  CAS  Google Scholar 

  44. Sarter M, Hasselmo ME, Bruno JP, Givens B (2005) Unraveling the attentional functions of cortical cholinergic inputs: interactions between signal-driven and cognitive modulation of signal detection. Brain Res Brain Res Rev 48:98–111

    Article  PubMed  CAS  Google Scholar 

  45. Kozak R, Bruno JP, Sarter M (2006) Augmented prefrontal acetylcholine release during challenged attentional performance. Cereb Cortex 16:9–17

    Article  PubMed  Google Scholar 

  46. Himmelheber AM, Sarter M, Bruno JP (1997) Operant performance and cortical acetylcholine release: role of response rate, reward density, and non-contingent stimuli. Brain Res Cogn Brain Res 6:23–36

    Article  PubMed  CAS  Google Scholar 

  47. Himmelheber AM, Sarter M, Bruno JP (2000) Increases in cortical acetylcholine release during sustained attention performance in rats. Brain Res Cogn Brain Res 9:313–325

    Article  PubMed  CAS  Google Scholar 

  48. Parikh V, Kozak R, Martinez V, Sarter M (2007) Prefrontal acetylcholine release controls cue detection on multiple timescales. Neuron 56:141–154

    Article  PubMed  CAS  Google Scholar 

  49. Conner JM, Chiba AA, Tuszynski MH (2005) The basal forebrain cholinergic system is essential for cortical plasticity and functional recovery following brain injury. Neuron 46:173–179

    Article  PubMed  CAS  Google Scholar 

  50. Conner JM, Culberson A, Packowski C, Chiba AA, Tuszynski MH (2003) Lesions of the Basal forebrain cholinergic system impair task acquisition and abolish cortical plasticity associated with motor skill learning. Neuron 38:819–829

    Article  PubMed  CAS  Google Scholar 

  51. Parikh V, Sarter M (2008) Cholinergic mediation of attention: contributions of phasic and tonic increases in prefrontal cholinergic activity. Ann NY Acad Sci 1129:225–235

    Article  PubMed  CAS  Google Scholar 

  52. McGaughy J, Sarter M (1998) Sustained attention performance in rats with intracortical infusions of 192 IgG-saporin-induced cortical cholinergic deafferentation: effects of physostigmine and FG 7142. Behav Neurosci 112:1519–1525

    Article  PubMed  CAS  Google Scholar 

  53. Sarter M, Gehring WJ, Kozak R (2006) More attention must be paid: the neurobiology of attentional effort. Brain Res Rev 51:145–160

    Article  PubMed  Google Scholar 

  54. Hasselmo ME, Sarter M (2011) Modes and models of forebrain cholinergic neuromodulation of cognition. Neuropsychopharmacology 36:52–73

    Article  PubMed  CAS  Google Scholar 

  55. Blusztajn JK, Wurtman RJ (1983) Choline and cholinergic neurons. Science 221:614–620

    Article  PubMed  CAS  Google Scholar 

  56. Lockman PR, Allen DD (2002) The transport of choline. Drug Devel Ind Pharm 28:749–771

    Article  CAS  Google Scholar 

  57. Ferguson SM, Bazalakova M, Savchenko V, Tapia JC, Wright J, Blakely RD (2004) Lethal impairment of cholinergic neurotransmission in hemicholinium-3-sensitive choline transporter knockout mice. Proc Natl Acad Sci USA 101:8762–8767

    Article  PubMed  CAS  Google Scholar 

  58. Apparsundaram S, Martinez V, Parikh V, Kozak R, Sarter M (2005) Increased capacity and density of choline transporters situated in synaptic membranes of the right medial prefrontal cortex of attentional task-performing rats. J Neurosci 25:3851–3856

    Article  PubMed  CAS  Google Scholar 

  59. Ferguson SM, Savchenko V, Apparsundaram S, Zwick M, Wright J, Heilman CJ, Yi H, Levey AI, Blakely RD (2003) Vesicular localization and activity-dependent trafficking of presynaptic choline transporters. J Neurosci 23:9697–9709

    PubMed  CAS  Google Scholar 

  60. Ferguson SM, Blakely RD (2004) The choline transporter resurfaces: new roles for synaptic vesicles? Mol Interv 4:22–37

    Article  PubMed  CAS  Google Scholar 

  61. Atweh S, Simon JR, Kuhar MJ (1975) Utilization of sodium-dependent high affinity choline uptake in vitro as a measure of the activity of cholinergic neurons in vivo. Life Sci 17:1535–1544

    Article  PubMed  CAS  Google Scholar 

  62. Simon JR, Atweh S, Kuhar MJ (1976) Sodium-dependent high affinity choline uptake: a regulatory step in the synthesis of acetylcholine. J Neurochem 26:909–922

    Article  PubMed  CAS  Google Scholar 

  63. Collier B, Ilson D (1977) The effect of preganglionic nerve stimulation on the accumulation of certain analogues of choline by a sympathetic ganglion. J Physiol 264:489–509

    PubMed  CAS  Google Scholar 

  64. Kessler PD, Marchbanks RM (1979) Choline transport is not coupled to acetylcholine synthesis. Nature 279:542–544

    Article  PubMed  CAS  Google Scholar 

  65. Sarter M, Parikh V, Howe WM (2009) nAChR agonist-induced cognition enhancement: integration of cognitive and neuronal mechanisms. Biochem Pharmacol 78:658–667

    Article  PubMed  CAS  Google Scholar 

  66. Howe WM, Ji J, Parikh V, Williams S, Mocaer E, Trocme-Thibierge C, Sarter M (2010) Enhancement of attentional performance by selective stimulation of alpha4beta2(*) nAChRs: underlying cholinergic mechanisms. Neuropsychopharmacology 35:1391–1401

    Article  PubMed  CAS  Google Scholar 

  67. Sarter M, Lustig C, Taylor SF (2012) Cholinergic contributions to the cognitive symptoms of schizophrenia and the viability of cholinergic treatments. Neuropharmacology 62(3):1544–53

    Article  PubMed  CAS  Google Scholar 

  68. Mesulam M, Shaw P, Mash D, Weintraub S (2004) Cholinergic nucleus basalis tauopathy emerges early in the aging-MCI-AD continuum. Ann Neurol 55:815–828

    Article  PubMed  CAS  Google Scholar 

  69. Potter AS, Newhouse PA, Bucci DJ (2006) Central nicotinic cholinergic systems: a role in the cognitive dysfunction in attention-deficit/hyperactivity disorder? Behav Brain Res 175:201–211

    Article  PubMed  CAS  Google Scholar 

  70. Sarter M, Parikh V (2005) Choline transporters, cholinergic transmission and cognition. Nat Rev Neurosci 6:48–56

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors’ research was supported by PHS grants MH080426, MH080322, and AG092592.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Parikh, V., Sarter, M. (2013). Forebrain Cholinergic Systems and Cognition: New Insights Based on Rapid Detection of Choline Spikes Using Enzyme-Based Biosensors. In: Marinesco, S., Dale, N. (eds) Microelectrode Biosensors. Neuromethods, vol 80. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-370-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-370-1_12

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-369-5

  • Online ISBN: 978-1-62703-370-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics