Advertisement

Analysis of Secreted Proteins

  • Valeria Severino
  • Annarita Farina
  • Angela Chambery
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1002)

Abstract

Most biological processes including growth, proliferation, differentiation, and apoptosis are coordinated by tightly regulated signaling pathways, which also involve secreted proteins acting in an autocrine and/or paracrine manner. In addition, extracellular signaling molecules affect local niche biology and influence the cross-talking with the surrounding tissues. The understanding of this molecular language may provide an integrated and broader view of cellular regulatory networks under physiological and pathological conditions. In this context, the profiling at a global level of cell secretomes (i.e., the subpopulations of a proteome secreted from the cell) has become an active area of research. The current interest in secretome research also deals with its high potential for the biomarker discovery and the identification of new targets for therapeutic strategies. Several proteomic and mass spectrometry platforms and methodologies have been applied to secretome profiling of conditioned media of cultured cell lines and primary cells. Nevertheless, the analysis of secreted proteins is still a very challenging task, because of the technical difficulties that may hamper the subsequent mass spectrometry analysis. This chapter describes a typical workflow for the analysis of proteins secreted by cultured cells. Crucial issues related to cell culture conditions for the collection of conditioned media, secretome preparation, and mass spectrometry analysis are discussed. Furthermore, an overview of quantitative LC-MS-based approaches, computational tools for data analysis, and strategies for validation of potential secretome biomarkers is also presented.

Key words

Secretome Proteomics Biomarker discovery Mass spectrometry Quantitative LC-MS 

Notes

Acknowledgments

We gratefully acknowledge Dr. Menotti Ruvo (IBB, CNR of Naples) and Dr. Carla Pasquarello Mosimann (Geneva Proteomics Core Facility) for their useful suggestions and support.

References

  1. 1.
    Pandey A, Mann M (2000) Proteomics to study genes and genomes. Nature 405:837–846PubMedCrossRefGoogle Scholar
  2. 2.
    Tyers M, Mann M (2003) From genomics to proteomics. Nature 422:193–197PubMedCrossRefGoogle Scholar
  3. 3.
    May M (2009) From cells, secrets of the secretome leak out. Nat Med 15:828PubMedCrossRefGoogle Scholar
  4. 4.
    Walter P, Gilmore R, Blobel G (1984) Protein translocation across the endoplasmic reticulum. Cell 38:5–8PubMedCrossRefGoogle Scholar
  5. 5.
    Nickel W (2003) The mystery of nonclassical protein secretion. A current view on cargo proteins and potential export routes. Eur J Biochem 270:2109–2119PubMedCrossRefGoogle Scholar
  6. 6.
    Karagiannis GS, Pavlou MP, Diamandis EP (2010) Cancer secretomics reveal pathophysiological pathways in cancer molecular oncology. Mol Oncol 4:496–510PubMedCrossRefGoogle Scholar
  7. 7.
    Makridakis M, Vlahou A (2010) Secretome proteomics for discovery of cancer biomarkers. J Proteomics 73:2291–2305PubMedCrossRefGoogle Scholar
  8. 8.
    Xue H, Lu B, Lai M (2008) The cancer secretome: a reservoir of biomarkers. J Transl Med 6:1–12CrossRefGoogle Scholar
  9. 9.
    Pavlou MP, Diamandis EP (2010) The cancer cell secretome: a good source for discovering biomarkers? J Proteomics 73:1896–1906PubMedCrossRefGoogle Scholar
  10. 10.
    Stastna M, Van Eyk JE (2012) Secreted proteins as a fundamental source for biomarker discovery. Proteomics 12:1–14Google Scholar
  11. 11.
    Dowling P, Clynes M (2011) Conditioned media from cell lines: a complementary model to clinical specimens for the discovery of disease-specific biomarkers. Proteomics 11:794–804PubMedCrossRefGoogle Scholar
  12. 12.
    Skalnikova H, Motlik J, Gadher SJ, Kovarova H (2011) Mapping of the secretome of primary isolates of mammalian cells, stem cells and derived cell lines. Proteomics 11:691–708PubMedCrossRefGoogle Scholar
  13. 13.
    Veenstra TD, Conrads TP, Hood BL, Avellino AM, Ellenbogen RG, Morrison RS (2005) Biomarkers: mining the biofluid proteome. Mol Cell Proteomics 4:409–418PubMedCrossRefGoogle Scholar
  14. 14.
    Mischak H, Allmaier G, Apweiler R et al (2010) Recommendations for biomarker identification and qualification in clinical proteomics. Sci Transl Med 2:46ps42PubMedCrossRefGoogle Scholar
  15. 15.
    Lim JWE, Bodnar A (2002) Proteome analysis of conditioned medium from mouse embryonic fibroblast feeder layers which support the growth of human embryonic stem cells. Proteomics 2:1187–1203PubMedCrossRefGoogle Scholar
  16. 16.
    Lee MJ, Kim J, Kim MY et al (2010) Proteomic analysis of tumor necrosis factor-alpha-induced secretome of human adipose tissue-derived mesenchymal stem cells. J Proteome Res 9:1754–1762PubMedCrossRefGoogle Scholar
  17. 17.
    Rocco M, Malorni L, Cozzolino R et al (2011) Proteomic profiling of human melanoma metastatic cell line secretomes. J Proteome Res 10:4703–4714PubMedCrossRefGoogle Scholar
  18. 18.
    Farina A, D’Aniello C, Severino V et al (2011) Temporal proteomic profiling of embryonic stem cell secretome during cardiac and neural differentiation. Proteomics 11:3972–3982PubMedCrossRefGoogle Scholar
  19. 19.
    Klein-Scory S, Kubler S, Diehl H et al (2010) Immunoscreening of the extracellular proteome of colorectal cancer cells. BMC Cancer 70:1–19Google Scholar
  20. 20.
    Srisomsap C, Sawangareetrakul P, Subhasitanont P et al (2010) Proteomic studies of cholangiocarcinoma and hepatocellular carcinoma cell secretomes. J Biomed Biotechnol 2010:437143PubMedCrossRefGoogle Scholar
  21. 21.
    Tang CE, Guan YJ, Yi B et al (2010) Identification of the amyloid beta-protein precursor and cystatin C as novel epidermal growth factor receptor regulated secretory proteins in nasopharyngeal carcinoma by proteomics. J Proteome Res 9:6101–6111PubMedCrossRefGoogle Scholar
  22. 22.
    Del Galdo F, Shaw MA, Jimenez SA (2010) Proteomic analysis identification of a pattern of shared alterations in the secretome of dermal fibroblasts from systemic sclerosis and nephrogenic systemic fibrosis. Am J Pathol 177:1638–1646PubMedCrossRefGoogle Scholar
  23. 23.
    Roca-Rivada A, Alonso J, Al-Massadi O et al (2011) Secretome analysis of rat adipose tissues shows location-specific roles for each depot type. J Proteomics 74:1068–1079PubMedCrossRefGoogle Scholar
  24. 24.
    Mathias RA, Wang B, Ji H et al (2009) Secretome-based proteomic profiling of Ras-transformed MDCK cells reveals extracellular modulators of epithelial-mesenchymal transition. J Proteome Res 8:2827–2837PubMedCrossRefGoogle Scholar
  25. 25.
    De la Fuente A, Mateos J, Lesende-Rodriguez I et al (2012) Proteome analysis during chondrocyte differentiation in a new chondrogenesis model using human umbilical cord stroma mesenchymal stem cells. Mol Cell Proteomics 11:M111.010496PubMedCrossRefGoogle Scholar
  26. 26.
    Weiss W, Gorg A (2009) High-resolution two-dimensional electrophoresis. Methods Mol Biol 564:13–32PubMedCrossRefGoogle Scholar
  27. 27.
    Mathias RA, Ji H, Simpson RJ (2012) Proteomic profiling of the epithelial-mesenchymal transition using 2D DIGE. Methods Mol Biol 854:269–286PubMedCrossRefGoogle Scholar
  28. 28.
    Shevchenko A, Tomas H, Havlis J, Olsen JV, Mann M (2006) In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nat Protoc 1:2856–2860PubMedCrossRefGoogle Scholar
  29. 29.
    Bendtsen JD, Jensen LJ, Blom N, Von Heijne G, Brunak S (2004) Feature-based prediction of non-classical and leaderless protein secretion. Protein Eng Des Sel 17:349–356PubMedCrossRefGoogle Scholar
  30. 30.
    Bendtsen JD, Nielsen H, von Heijne G, Brunak S (2004) Improved prediction of signal peptides: SignalP 3.0. J Mol Biol 340:783–795PubMedCrossRefGoogle Scholar
  31. 31.
    Bantscheff M, Schirle M, Sweetman G, Rick J, Kuster B (2007) Quantitative mass spectrometry in proteomics: a critical review. Anal Bioanal Chem 389:1017–1031CrossRefGoogle Scholar
  32. 32.
    Ong SE, Blagoev B, Kratchmarova I et al (2002) Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol Cell Proteomics 1:376–386PubMedCrossRefGoogle Scholar
  33. 33.
    May C, Brosseron F, Chartowski P, Schumbrutzki C, Schoenebeck B, Marcus K (2011) Instruments and methods in proteomics. Methods Mol Biol 696:3–26CrossRefGoogle Scholar
  34. 34.
    Brewis IA, Brennan P (2010) Proteomics technologies for the global identification and quantification of proteins. Adv Protein Chem Struct Biol 80:1–44PubMedCrossRefGoogle Scholar
  35. 35.
    Mann M (2006) Functional and quantitative proteomics using SILAC. Nat Rev Mol Cell Biol 7:952–958PubMedCrossRefGoogle Scholar
  36. 36.
    Chen CY, Chi LM, Chi HC et al (2012) Stable isotope labeling with amino acids in cell culture (SILAC)-based quantitative proteomics study of a thyroid hormone-regulated secretome in human hepatoma cells. Mol Cell Proteomics 11:M111.011270PubMedCrossRefGoogle Scholar
  37. 37.
    Kashyap MK, Harsha HC, Renuse S et al (2010) SILAC-based quantitative proteomic approach to identify potential biomarkers from the esophageal squamous cell carcinoma secretome. Cancer Biol Ther 10:796–810PubMedCrossRefGoogle Scholar
  38. 38.
    Gronborg M, Kristiansen TZ, Iwahori A et al (2006) Biomarker discovery from pancreatic cancer secretome using a differential proteomic approach. Mol Cell Proteomics 5:157–171PubMedGoogle Scholar
  39. 39.
    Formolo CA, Williams R, Gordish-Dressman H, MacDonald TJ, Lee NH, Hathout Y (2011) Secretome signature of invasive glioblastoma multiforme. J Proteome Res 10:3149–3159CrossRefGoogle Scholar
  40. 40.
    Calamia V, Rocha B, Mateos J, Fernandez-Puente P, Ruiz-Romero C, Blanco FJ (2011) Metabolic labeling of chondrocytes for the quantitative analysis of the interleukin-1-beta-mediated modulation of their intracellular and extracellular proteomes. J Proteome Res 10:3701–3711PubMedCrossRefGoogle Scholar
  41. 41.
    Greco TM, Seeholzer SH, Mak A, Spruce L, Ischiropoulos H (2010) Quantitative mass spectrometry-based proteomics reveals the dynamic range of primary mouse astrocyte protein secretion. J Proteome Res 9:2764–2774PubMedCrossRefGoogle Scholar
  42. 42.
    Chan CY, Masui O, Krakovska O et al (2011) Identification of differentially regulated secretome components during skeletal myogenesis. Mol Cell Proteomics 10:M110.004804CrossRefGoogle Scholar
  43. 43.
    Henningsen J, Rigbolt KT, Blagoev B, Pedersen BK, Kratchmarova I (2010) Dynamics of the skeletal muscle secretome during myoblast differentiation. Mol Cell Proteomics 9:2482–2496PubMedCrossRefGoogle Scholar
  44. 44.
    Ross PL, Huang YN, Marchese JN et al (2004) Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol Cell Proteomics 3:1154–1169PubMedCrossRefGoogle Scholar
  45. 45.
    Chenau J, Michelland S, de Fraipont F et al (2009) The cell line secretome, a suitable tool for investigating proteins released in vivo by tumors: application to the study of p53-modulated proteins secreted in lung cancer cells. J Proteome Res 8:4579–4591PubMedCrossRefGoogle Scholar
  46. 46.
    Chiu KH, Chang YH, Wu YS, Lee SH, Liao PC (2011) Quantitative secretome analysis reveals that COL6A1 is a metastasis-associated protein using stacking gel-aided purification combined with iTRAQ labeling. J Proteome Res 10:1110–1125PubMedCrossRefGoogle Scholar
  47. 47.
    Lietzen N, Ohman T, Rintahaka J et al (2011) Quantitative subcellular proteome and secretome profiling of influenza A virus-infected human primary macrophages. PLoS Pathog 7:e1001340PubMedCrossRefGoogle Scholar
  48. 48.
    Zhong J, Krawczyk SA, Chaerkady R et al (2010) Temporal profiling of the secretome during adipogenesis in humans. J Proteome Res 9:5228–5238PubMedCrossRefGoogle Scholar
  49. 49.
    Gygi SP, Rist B, Gerber SA, Turecek F, Gelb MH, Aebersold R (1999) Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat Biotechnol 17:994–999PubMedCrossRefGoogle Scholar
  50. 50.
    Khwaja FW, Svoboda P, Reed M, Pohl J, Pyrzynska B, Van Meir EG (2006) Proteomic identification of the wt-p53-regulated tumor cell secretome. Oncogene 25:7650–7661PubMedCrossRefGoogle Scholar
  51. 51.
    Pocsfalvi G, Votta G, De Vincenzo A et al (2011) Analysis of secretome changes uncovers an autocrine/paracrine component in the modulation of cell proliferation and motility by c-Myc. J Proteome Res 10:5326–5337PubMedCrossRefGoogle Scholar
  52. 52.
    Bonzon-Kulichenko E, Martinez-Martinez S, Trevisan-Herraz M, Navarro P, Redondo JM, Vazquez J (2011) Quantitative in-depth analysis of the dynamic secretome of activated Jurkat T-cells. J Proteomics 75:561–571PubMedCrossRefGoogle Scholar
  53. 53.
    Roelofsen H, Dijkstra M, Weening D, de Vries MP, Hoek A, Vonk RJ (2009) Comparison of isotope-labeled amino acid incorporation rates (CILAIR) provides a quantitative method to study tissue secretomes. Mol Cell Proteomics 8:316–324PubMedGoogle Scholar
  54. 54.
    Bondarenko PV, Chelius D, Shaler TA (2002) Identification and relative quantitation of protein mixtures by enzymatic digestion followed by capillary reversed-phase liquid chromatography-tandem mass spectrometry. Anal Chem 74:4741–4749PubMedCrossRefGoogle Scholar
  55. 55.
    Chelius D, Bondarenko PV (2002) Quantitative profiling of proteins in complex mixtures using liquid chromatography and mass spectrometry. J Proteome Res 1:317–323PubMedCrossRefGoogle Scholar
  56. 56.
    Wang W, Zhou H, Lin H et al (2003) Quantification of proteins and metabolites by mass spectrometry without isotopic labeling or spiked standards. Anal Chem 75:4818–4826PubMedCrossRefGoogle Scholar
  57. 57.
    Ishihama Y, Oda Y, Tabata T et al (2005) Exponentially modified protein abundance index (emPAI) for estimation of absolute protein amount in proteomics by the number of sequenced peptides per protein. Mol Cell Proteomics 4:1265–1272PubMedCrossRefGoogle Scholar
  58. 58.
    Lu P, Vogel C, Wang R, Yao X, Marcotte EM (2007) Absolute protein expression profiling estimates the relative contributions of transcriptional and translational regulation. Nat Biotechnol 25:117–124PubMedCrossRefGoogle Scholar
  59. 59.
    Malard V, Chardan L, Roussi S et al (2012) Analytical constraints for the analysis of human cell line secretomes by shotgun proteomics. J Proteomics 75:1043–1054PubMedCrossRefGoogle Scholar
  60. 60.
    Xue H, Lu B, Zhang J et al (2010) Identification of serum biomarkers for colorectal cancer metastasis using a differential secretome approach. J Proteome Res 9:545–555PubMedCrossRefGoogle Scholar
  61. 61.
    Gao BB, Stuart L, Feener EP (2008) Label-free quantitative analysis of one-dimensional PAGE LC/MS/MS proteome: application on angiotensin II-stimulated smooth muscle cells secretome. Mol Cell Proteomics 7:2399–2409PubMedCrossRefGoogle Scholar
  62. 62.
    Rifai N, Gillette MA, Carr SA (2006) Protein biomarker discovery and validation: the long and uncertain path to clinical utility. Nat Biotechnol 24:971–983PubMedCrossRefGoogle Scholar
  63. 63.
    Gygi SP, Rochon Y, Franza BR, Aebersold R (1999) Correlation between protein and mRNA abundance in yeast. Mol Cell Biol 19:1720–1730PubMedGoogle Scholar
  64. 64.
    Kitteringham NR, Jenkins RE, Lane CS, Elliott VL, Park BK (2009) Multiple reaction monitoring for quantitative biomarker analysis in proteomics and metabolomics. J Chromatogr B Analyt Technol Biomed Life Sci 877:1229–1239PubMedCrossRefGoogle Scholar
  65. 65.
    Mbeunkui F, Fodstad O, Pannell LK (2006) Secretory protein enrichment and analysis: an optimized approach applied on cancer cell lines using 2D LC-MS/MS. J Proteome Res 5:899–906PubMedCrossRefGoogle Scholar
  66. 66.
    Yao L, Zhang Y, Chen K, Hu X, Xu LX (2011) Discovery of IL-18 as a novel secreted protein contributing to doxorubicin resistance by comparative secretome analysis of MCF-7 and MCF-7/Dox. PLoS One 6:e24684PubMedCrossRefGoogle Scholar
  67. 67.
    Schiarea S, Solinas G, Allavena P et al (2010) Secretome analysis of multiple pancreatic cancer cell lines reveals perturbations of key functional networks. J Proteome Res 9:4376–4392PubMedCrossRefGoogle Scholar
  68. 68.
    Pellitteri-Hahn MC, Warren MC, Didier DN et al (2006) Improved mass spectrometric proteomic profiling of the secretome of rat vascular endothelial cells. J Proteome Res 5:2861–2864PubMedCrossRefGoogle Scholar
  69. 69.
    Alvarez-Llamas G, Szalowska E, de Vries MP et al (2007) Characterization of the human visceral adipose tissue secretome. Mol Cell Proteomics 6:589–600PubMedCrossRefGoogle Scholar
  70. 70.
    Stastna M, Chimenti I, Marban E, Van Eyk JE (2010) Identification and functionality of proteomes secreted by rat cardiac stem cells and neonatal cardiomyocytes. Proteomics 10:245–253PubMedCrossRefGoogle Scholar
  71. 71.
    Pirkmajer S, Chibalin AV (2011) Serum starvation: caveat emptor. Am J Physiol Cell Physiol 301:C272–C279PubMedCrossRefGoogle Scholar
  72. 72.
    Hasan NM, Adams GE, Joiner MC (1999) Effect of serum starvation on expression and phosphorylation of PKC-alpha and p53 in V79 cells: implications for cell death. Int J Cancer 80:400–405PubMedCrossRefGoogle Scholar
  73. 73.
    Keene SD, Greco TM, Parastatidis I et al (2009) Mass spectrometric and computational analysis of cytokine-induced alterations in the astrocyte secretome. Proteomics 9:768–782PubMedCrossRefGoogle Scholar
  74. 74.
    Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63PubMedCrossRefGoogle Scholar
  75. 75.
    Phillips HJ, Terryberry JE (1957) Counting actively metabolizing tissue cultured cells. Exp Cell Res 13:341–347PubMedCrossRefGoogle Scholar
  76. 76.
    Weng LP, Wu CC, Hsu BL et al (2008) Secretome-based identification of Mac-2 binding protein as a potential oral cancer marker involved in cell growth and motility. J Proteome Res 7:3765–3775PubMedCrossRefGoogle Scholar
  77. 77.
    Dowell JA, Johnson JA, Li L (2009) Identification of astrocyte secreted proteins with a combination of shotgun proteomics and bioinformatics. J Proteome Res 8:4135–4143PubMedCrossRefGoogle Scholar
  78. 78.
    Polisetty RV, Gupta MK, Nair SC et al (2011) Glioblastoma cell secretome: analysis of three glioblastoma cell lines reveal 148 non-redundant proteins. J Proteomics 74:1918–1925PubMedCrossRefGoogle Scholar
  79. 79.
    Wu CC, Hsu CW, Chen CD et al (2010) Candidate serological biomarkers for cancer identified from the secretomes of 23 cancer cell lines and the human protein atlas. Mol Cell Proteomics 9:1100–1117PubMedCrossRefGoogle Scholar
  80. 80.
    Caccia D, Zanetti Domingues L, Micciche F et al (2011) Secretome compartment is a valuable source of biomarkers for cancer-relevant pathways. J Proteome Res 10:4196–4207PubMedCrossRefGoogle Scholar
  81. 81.
    Yoon JH, Yea K, Kim J et al (2009) Comparative proteomic analysis of the insulin-induced L6 myotube secretome. Proteomics 9:51–60PubMedCrossRefGoogle Scholar
  82. 82.
    Canals F, Colome N, Ferrer C, Plaza-Calonge Mdel C, Rodriguez-Manzaneque JC (2006) Identification of substrates of the extracellular protease ADAMTS1 by DIGE proteomic analysis. Proteomics 6(Suppl 1):S28–S35PubMedCrossRefGoogle Scholar
  83. 83.
    Chevallet M, Diemer H, Luche S, van Dorsselaer A, Rabilloud T, Leize-Wagner E (2006) Improved mass spectrometry compatibility is afforded by ammoniacal silver staining. Proteomics 6:2350–2354PubMedCrossRefGoogle Scholar
  84. 84.
    Kashat L, So AK, Masui O et al (2010) Secretome-based identification and characterization of potential biomarkers in thyroid cancer. J Proteome Res 9:5757–5769PubMedCrossRefGoogle Scholar
  85. 85.
    Ralhan R, Masui O, Desouza LV, Matta A, Macha M, Siu KW (2011) Identification of proteins secreted by head and neck cancer cell lines using LC-MS/MS: strategy for discovery of candidate serological biomarkers. Proteomics 11:2363–2376PubMedCrossRefGoogle Scholar
  86. 86.
    Luo X, Liu Y, Wang R, Hu H, Zeng R, Chen H (2011) A high-quality secretome of A549 cells aided the discovery of C4b-binding protein as a novel serum biomarker for non-small cell lung cancer. J Proteomics 74:528–538PubMedCrossRefGoogle Scholar
  87. 87.
    Wang CL, Wang CI, Liao PC et al (2009) Discovery of retinoblastoma-associated binding protein 46 as a novel prognostic marker for distant metastasis in nonsmall cell lung cancer by combined analysis of cancer cell secretome and pleural effusion proteome. J Proteome Res 8:4428–4440PubMedCrossRefGoogle Scholar
  88. 88.
    Chang KP, Wu CC, Chen HC et al (2010) Identification of candidate nasopharyngeal carcinoma serum biomarkers by cancer cell secretome and tissue transcriptome analysis: potential usage of cystatin A for predicting nodal stage and poor prognosis. Proteomics 10:2644–2660PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2013

Authors and Affiliations

  • Valeria Severino
    • 1
  • Annarita Farina
    • 2
  • Angela Chambery
    • 1
  1. 1.Second University of NaplesCasertaItaly
  2. 2.Geneva UniversityGenevaSwitzerland

Personalised recommendations