Sheng M (2001) Molecular organization of the postsynaptic specialization. Proc Natl Acad Sci USA 98:7058–7061
PubMed
CrossRef
CAS
Google Scholar
Bayés A, van de Lagemaat LN, Collins MO et al (2011) Characterization of the proteome, diseases and evolution of the human postsynaptic density. Nat Neurosci 14:19–21
PubMed
CrossRef
Google Scholar
Szumlinski KK, Kalivas PW, Worley PF (2006) Homer proteins: implications for neuropsychiatric disorders. Curr Opin Neurobiol 16:251–257
PubMed
CrossRef
CAS
Google Scholar
MacCoss MJ, Matthews DE (2005) Quantitative MS for proteomics: teaching a new dog old tricks. Anal Chem 77:294A–302A
PubMed
CAS
Google Scholar
Cotman CW (1974) Isolation of postsynaptic densities from rat brain. J Cell Biol 63:441–455
PubMed
CrossRef
CAS
Google Scholar
Keen JH, Willingham MC, Pastan IH (1979) Clathrin-coated vesicles: isolation, dissociation and factor-dependent reassociation of clathrin baskets. Cell 16:303–312
PubMed
CrossRef
CAS
Google Scholar
Phillips GR, Huang JK, Wang Y et al (2001) The presynaptic particle web. Neuron 32:63–77
PubMed
CrossRef
CAS
Google Scholar
Phillips GR, Anderson TR, Florens L et al (2004) Actin-binding proteins in a postsynaptic preparation: Lasp-1 is a component of central nervous system synapses and dendritic spines. J Neurosci Res 78:38–48
PubMed
CrossRef
CAS
Google Scholar
Phillips GR, Florens L, Tanaka H, Khaing ZZ, Fidler L, Yates JR, Colman DR (2005) Proteomic comparison of two fractions derived from the transsynaptic scaffold. J Neurosci Res 81:762–775
PubMed
CrossRef
CAS
Google Scholar
Hahn C-G, Banerjee A, Macdonald ML et al (2009) The post-synaptic density of human postmortem brain tissues: an experimental study paradigm for neuropsychiatric illnesses. PLoS One 4:e5251
PubMed
CrossRef
Google Scholar
Ramos-Ortolaza DL, Bushlin I, Abul-Husn N, Annangudi SP, Sweedler J, Devi LA (2010) Quantitative neuroproteomics of the synapse. Methods Mol Biol 615:227–246
PubMed
CrossRef
CAS
Google Scholar
Wessel D, Flügge UI (1984) A method for the quantitative recovery of protein in dilute solution in the presence of detergents and lipids. Anal Biochem 138:141–143
PubMed
CrossRef
CAS
Google Scholar
Yu Y-Q, Gilar M, Lee PJ, Bouvier ESP, Gebler JC (2003) Enzyme-friendly, mass spectrometry-compatible surfactant for in-solution enzymatic digestion of proteins. Anal Chem 75:6023–6028
PubMed
CrossRef
CAS
Google Scholar
Speers AE, Blackler AR, Wu CC (2007) Shotgun analysis of integral membrane proteins facilitated by elevated temperature. Anal Chem 79:4613–4620
PubMed
CrossRef
CAS
Google Scholar
Farias SE, Kline KG, Wu CC (2010) Quantitative improvements in peptide recovery at elevated chromatographic temperatures from microcapillary liquid chromatography-mass spectrometry analyses of brain using selected reaction monitoring. Anal Chem 82:3435–3440
PubMed
CrossRef
CAS
Google Scholar
Finney GL, Blackler AR, Hoopmann MR, Canterbury JD, Wu CC, MacCoss MJ (2008) Label-free comparative analysis of proteomics mixtures using chromatographic alignment of high-resolution μLC−MS data. Anal Chem 80:961–971
PubMed
CrossRef
CAS
Google Scholar
Neilson KA, Ali NA, Muralidharan S et al (2011) Less label, more free: approaches in label-free quantitative mass spectrometry. Proteomics 11:535–553
PubMed
CrossRef
CAS
Google Scholar
McDonald WH, Tabb DL, Sadygov RG et al (2004) MS1, MS2, and SQT—three unified, compact, and easily parsed file formats for the storage of shotgun proteomic spectra and identifications. Rapid Commun Mass Spectrom 18:2162–2168
PubMed
CrossRef
CAS
Google Scholar
Hoopmann MR, Finney GL, MacCoss MJ (2007) High-speed data reduction, feature detection, and MS/MS spectrum quality assessment of shotgun proteomics data sets using high-resolution mass spectrometry. Anal Chem 79:5620–5632
PubMed
CrossRef
CAS
Google Scholar
Hsieh EJ, Hoopmann MR, MacLean B, MacCoss MJ (2010) Comparison of database search strategies for high precursor mass accuracy MS/MS data. J Proteome Res 9:1138–1143
PubMed
CrossRef
CAS
Google Scholar
Eng JK, McCormack AL, Yates JR (1994) An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. J Am Soc Mass Spectrom 5:976–989
CrossRef
CAS
Google Scholar
Moore RE, Young MK, Lee TD (2002) Qscore: an algorithm for evaluating SEQUEST database search results. J Am Soc Mass Spectrom 13:378–386
PubMed
CrossRef
CAS
Google Scholar
Käll L, Canterbury JD, Weston J, Noble WS, MacCoss MJ (2007) Semi-supervised learning for peptide identification from shotgun proteomics datasets. Nat Methods 4:923–925
PubMed
CrossRef
Google Scholar
Schuchard MD, Mehigh RJ, Cockrill SL et al (2005) Artifactual isoform profile modification following treatment of human plasma or serum with protease inhibitor, monitored by 2-dimensional electrophoresis and mass spectrometry. Biotechniques 39:239–247
PubMed
CrossRef
CAS
Google Scholar
Hsieh EJ, Shulman NJ, Dai DF, Vincow ES, Karunadharma PP, Pallanck L, Rabinovitch PS, MacCoss MJ (2012) Topograph, a software platform for precursor enrichment corrected global protein turnover measurements. Mol Cell Proteomics 11:1468–1474
PubMed
CrossRef
CAS
Google Scholar
Bateman NW, Goulding SP, Shulman N, Gadok AK, Szumlinski KK, MacCoss MJ, Wu CC. Maximizing peptide identification events in proteomic workflows utilizing data-dependent acquisition. Under review, Molecular & Cellular Protoemics
PubMed
CrossRef
CAS
Google Scholar
MacLean B, Tomazela DM, Shulman N et al (2010) Skyline: an open source document editor for creating and analyzing targeted proteomics experiments. Bioinformatics 26:966–968
PubMed
CrossRef
CAS
Google Scholar