Skip to main content

Label-Free Differential Analysis of Murine Postsynaptic Densities

Part of the Methods in Molecular Biology book series (MIMB,volume 1002)

Abstract

This chapter provides detailed methodology for the enrichment and label-free differential analysis of postsynaptic density (PSD) proteins. Methods discussed will include tissue homogenization, subcellular fractionation, protein digestion, and label-free differential analysis after liquid chromatography–tandem mass spectrometry. When combined, these protocols facilitate the identification of receptors and signal transducers that comprise the PSD and provide an optimized workflow for the differential analysis of PSD proteomes. This strategy supports a utility for coupling fractionation with proteomics analysis to enrich for low-abundant proteins in cellular localizations that would otherwise be lost in a global tissue context.

Key words

  • Postsynaptic density
  • Label-free
  • Differential analysis
  • Neuroproteomics
  • Tandem mass spectrometry
  • Sucrose gradient centrifugation
  • Topograph

The online version of the original chapter can be found at http://dx.doi.org/10.1007/978-1-62703-360-2_24

An erratum to this chapter can be found at http://dx.doi.org/10.1007/978-1-62703-360-2_24

This is a preview of subscription content, access via your institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-62703-360-2_22
  • Chapter length: 15 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-1-62703-360-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   149.00
Price excludes VAT (USA)
Hardcover Book
USD   149.99
Price excludes VAT (USA)
Fig. 1
Fig. 2

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Sheng M (2001) Molecular organization of the postsynaptic specialization. Proc Natl Acad Sci USA 98:7058–7061

    PubMed  CrossRef  CAS  Google Scholar 

  2. Bayés A, van de Lagemaat LN, Collins MO et al (2011) Characterization of the proteome, diseases and evolution of the human postsynaptic density. Nat Neurosci 14:19–21

    PubMed  CrossRef  Google Scholar 

  3. Szumlinski KK, Kalivas PW, Worley PF (2006) Homer proteins: implications for neuropsychiatric disorders. Curr Opin Neurobiol 16:251–257

    PubMed  CrossRef  CAS  Google Scholar 

  4. MacCoss MJ, Matthews DE (2005) Quantitative MS for proteomics: teaching a new dog old tricks. Anal Chem 77:294A–302A

    PubMed  CAS  Google Scholar 

  5. Cotman CW (1974) Isolation of postsynaptic densities from rat brain. J Cell Biol 63:441–455

    PubMed  CrossRef  CAS  Google Scholar 

  6. Keen JH, Willingham MC, Pastan IH (1979) Clathrin-coated vesicles: isolation, dissociation and factor-dependent reassociation of clathrin baskets. Cell 16:303–312

    PubMed  CrossRef  CAS  Google Scholar 

  7. Phillips GR, Huang JK, Wang Y et al (2001) The presynaptic particle web. Neuron 32:63–77

    PubMed  CrossRef  CAS  Google Scholar 

  8. Phillips GR, Anderson TR, Florens L et al (2004) Actin-binding proteins in a postsynaptic preparation: Lasp-1 is a component of central nervous system synapses and dendritic spines. J Neurosci Res 78:38–48

    PubMed  CrossRef  CAS  Google Scholar 

  9. Phillips GR, Florens L, Tanaka H, Khaing ZZ, Fidler L, Yates JR, Colman DR (2005) Proteomic comparison of two fractions derived from the transsynaptic scaffold. J Neurosci Res 81:762–775

    PubMed  CrossRef  CAS  Google Scholar 

  10. Hahn C-G, Banerjee A, Macdonald ML et al (2009) The post-synaptic density of human postmortem brain tissues: an experimental study paradigm for neuropsychiatric illnesses. PLoS One 4:e5251

    PubMed  CrossRef  Google Scholar 

  11. Ramos-Ortolaza DL, Bushlin I, Abul-Husn N, Annangudi SP, Sweedler J, Devi LA (2010) Quantitative neuroproteomics of the synapse. Methods Mol Biol 615:227–246

    PubMed  CrossRef  CAS  Google Scholar 

  12. Wessel D, Flügge UI (1984) A method for the quantitative recovery of protein in dilute solution in the presence of detergents and lipids. Anal Biochem 138:141–143

    PubMed  CrossRef  CAS  Google Scholar 

  13. Yu Y-Q, Gilar M, Lee PJ, Bouvier ESP, Gebler JC (2003) Enzyme-friendly, mass spectrometry-compatible surfactant for in-solution enzymatic digestion of proteins. Anal Chem 75:6023–6028

    PubMed  CrossRef  CAS  Google Scholar 

  14. Speers AE, Blackler AR, Wu CC (2007) Shotgun analysis of integral membrane proteins facilitated by elevated temperature. Anal Chem 79:4613–4620

    PubMed  CrossRef  CAS  Google Scholar 

  15. Farias SE, Kline KG, Wu CC (2010) Quantitative improvements in peptide recovery at elevated chromatographic temperatures from microcapillary liquid chromatography-mass spectrometry analyses of brain using selected reaction monitoring. Anal Chem 82:3435–3440

    PubMed  CrossRef  CAS  Google Scholar 

  16. Finney GL, Blackler AR, Hoopmann MR, Canterbury JD, Wu CC, MacCoss MJ (2008) Label-free comparative analysis of proteomics mixtures using chromatographic alignment of high-resolution μLC−MS data. Anal Chem 80:961–971

    PubMed  CrossRef  CAS  Google Scholar 

  17. Neilson KA, Ali NA, Muralidharan S et al (2011) Less label, more free: approaches in label-free quantitative mass spectrometry. Proteomics 11:535–553

    PubMed  CrossRef  CAS  Google Scholar 

  18. McDonald WH, Tabb DL, Sadygov RG et al (2004) MS1, MS2, and SQT—three unified, compact, and easily parsed file formats for the storage of shotgun proteomic spectra and identifications. Rapid Commun Mass Spectrom 18:2162–2168

    PubMed  CrossRef  CAS  Google Scholar 

  19. Hoopmann MR, Finney GL, MacCoss MJ (2007) High-speed data reduction, feature detection, and MS/MS spectrum quality assessment of shotgun proteomics data sets using high-resolution mass spectrometry. Anal Chem 79:5620–5632

    PubMed  CrossRef  CAS  Google Scholar 

  20. Hsieh EJ, Hoopmann MR, MacLean B, MacCoss MJ (2010) Comparison of database search strategies for high precursor mass accuracy MS/MS data. J Proteome Res 9:1138–1143

    PubMed  CrossRef  CAS  Google Scholar 

  21. Eng JK, McCormack AL, Yates JR (1994) An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. J Am Soc Mass Spectrom 5:976–989

    CrossRef  CAS  Google Scholar 

  22. Moore RE, Young MK, Lee TD (2002) Qscore: an algorithm for evaluating SEQUEST database search results. J Am Soc Mass Spectrom 13:378–386

    PubMed  CrossRef  CAS  Google Scholar 

  23. Käll L, Canterbury JD, Weston J, Noble WS, MacCoss MJ (2007) Semi-supervised learning for peptide identification from shotgun proteomics datasets. Nat Methods 4:923–925

    PubMed  CrossRef  Google Scholar 

  24. Schuchard MD, Mehigh RJ, Cockrill SL et al (2005) Artifactual isoform profile modification following treatment of human plasma or serum with protease inhibitor, monitored by 2-dimensional electrophoresis and mass spectrometry. Biotechniques 39:239–247

    PubMed  CrossRef  CAS  Google Scholar 

  25. Hsieh EJ, Shulman NJ, Dai DF, Vincow ES, Karunadharma PP, Pallanck L, Rabinovitch PS, MacCoss MJ (2012) Topograph, a software platform for precursor enrichment corrected global protein turnover measurements. Mol Cell Proteomics 11:1468–1474

    PubMed  CrossRef  CAS  Google Scholar 

  26. Bateman NW, Goulding SP, Shulman N, Gadok AK, Szumlinski KK, MacCoss MJ, Wu CC. Maximizing peptide identification events in proteomic workflows utilizing data-dependent acquisition. Under review, Molecular & Cellular Protoemics

    PubMed  CrossRef  CAS  Google Scholar 

  27. MacLean B, Tomazela DM, Shulman N et al (2010) Skyline: an open source document ­editor for creating and analyzing targeted ­proteomics experiments. Bioinformatics 26:966–968

    PubMed  CrossRef  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the following grants: HD41697-10 (SPG), GM103533/AA016171(MJM), and AA016653/AA016171 (CCW).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Goulding, S.P., MacCoss, M.J., Wu, C.C. (2013). Label-Free Differential Analysis of Murine Postsynaptic Densities. In: Zhou, M., Veenstra, T. (eds) Proteomics for Biomarker Discovery. Methods in Molecular Biology, vol 1002. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-360-2_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-360-2_22

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-359-6

  • Online ISBN: 978-1-62703-360-2

  • eBook Packages: Springer Protocols