Skip to main content

Two-Dimensional SDS-PAGE Fractionation of Biological Samples for Biomarker Discovery

Part of the Methods in Molecular Biology book series (MIMB,volume 1002)

Abstract

Two-dimensional electrophoresis is still a very valuable tool in proteomics, due to its reproducibility and its ability to analyze complete proteins. However, due to its sensitivity to dynamic range issues, its most suitable use in the frame of biomarker discovery is not on very complex fluids such as plasma, but rather on more proximal, simpler fluids such as CSF, urine, or secretome samples. Here, we describe the complete workflow for the analysis of such dilute samples by two-dimensional electrophoresis, starting from sample concentration, then the two-dimensional electrophoresis step per se, ending with the protein detection by fluorescence.

Key words

  • 2D-PAGE
  • Fluorescence dyes
  • Image analysis
  • Sample preparation
  • Secretome
  • Biological fluids

This is a preview of subscription content, access via your institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (Canada)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.00
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Lescuyer P, Hochstrasser D, Rabilloud T (2007) How shall we use the proteomics toolbox for biomarker discovery? J Proteome Res 6:3371–3376

    CrossRef  PubMed  CAS  Google Scholar 

  2. Teng PN, Bateman NW, Hood BL et al (2010) Advances in proximal fluid proteomics for disease biomarker discovery. J Proteome Res 9:6091–6100

    CrossRef  PubMed  CAS  Google Scholar 

  3. Choi YS, Choe LH, Lee KH (2010) Recent cerebrospinal fluid biomarker studies of Alzheimer’s disease. Expert Rev Proteomics 7:919–926

    CrossRef  PubMed  CAS  Google Scholar 

  4. Kroksveen AC, Opsahl JA, Aye TT et al (2011) Proteomics of human cerebrospinal fluid: discovery and verification of biomarker candidates in neurodegenerative diseases using quantitative proteomics. J Proteomics 74:371–388

    CrossRef  PubMed  CAS  Google Scholar 

  5. Maurer MH (2010) Proteomics of brain extracellular fluid (ECF) and cerebrospinal fluid (CSF). Mass Spectrom Rev 29:17–28

    PubMed  Google Scholar 

  6. Zanusso G, Fiorini M, Ferrari S et al (2011) Cerebrospinal fluid markers in sporadic Creutzfeldt-Jakob disease. Int J Mol Sci 12:6281–6292

    CrossRef  PubMed  CAS  Google Scholar 

  7. Zhang J (2007) Proteomics of human cerebrospinal fluid—the good, the bad, and the ugly. Proteomics Clin Appl 41:805–819

    CrossRef  Google Scholar 

  8. Casado-Vela J, del Pulgar TG, Cebrian A et al (2011) Human urine proteomics: building a list of human urine cancer biomarkers. Expert Rev Proteomics 8:347–360

    CrossRef  PubMed  CAS  Google Scholar 

  9. Julian BA, Suzuki H, Suzuki Y et al (2009) Sources of urinary proteins and their analysis by urinary proteomics for the detection of biomarkers of disease. Proteomics Clin Appl 3:1029–1043

    CrossRef  PubMed  CAS  Google Scholar 

  10. Mischak H, Kolch W, Aivaliotis M et al (2010) Comprehensive human urine standards for comparability and standardization in clinical proteome analysis. Proteomics Clin Appl 4:464–478

    CrossRef  PubMed  CAS  Google Scholar 

  11. Schaaij-Visser TB, Proost N, Nagel R et al (2011) Secretome proteomics to identify indicators for lung cancer treatment response prediction and monitoring. J Thorac Oncol 6:S1011

    Google Scholar 

  12. Makridakis M, Roubelaids MG, Bitsika V et al (2010) Analysis of secreted proteins for the study of bladder cancer cell aggressiveness. J Proteome Res 9:3243–3259

    CrossRef  PubMed  CAS  Google Scholar 

  13. Makridakis M, Vlahou A (2010) Secretome proteomics for discovery of cancer biomarkers. J Proteomics 73:2291–2305

    CrossRef  PubMed  CAS  Google Scholar 

  14. Luo XY, Liu YS, Wang R et al (2011) A high-quality secretome of A549 cells aided the discovery of C4b-binding protein as a novel serum biomarker for non-small cell lung cancer. J Proteomics 74:528–538

    CrossRef  PubMed  CAS  Google Scholar 

  15. Caccia D, Domingues LZ, Micciche F et al (2011) Secretome compartment is a valuable source of biomarkers for cancer-relevant pathways. J Proteome Res 10:4196–4207

    CrossRef  PubMed  CAS  Google Scholar 

  16. Sarkissian G, Fergelot P, Lamy PJ et al (2008) Identification of Pro-MMP-7 as a serum marker for renal cell carcinoma by use of proteomic analysis. Clin Chem 54:574–581

    CrossRef  PubMed  CAS  Google Scholar 

  17. Roessler M, Rollinger W, Mantovani-Endl L et al (2006) Identification of PSME3 as a novel serum tumor marker for colorectal cancer by combining two-dimensional polyacrylamide gel electrophoresis with a strictly mass spectrometry-based approach for data analysis. Mol Cell Proteomics 5:2092–2101

    CrossRef  PubMed  CAS  Google Scholar 

  18. Celis JE (2004) Gel-based proteomics: what does MCP expect? Mol Cell Proteomics 3:949

    PubMed  CAS  Google Scholar 

  19. Rabilloud T, Chevallet M, Luche S et al (2011) Two-dimensional gel electrophoresis in proteomics: past, present and future. J Proteomics 73:2064–2077

    CrossRef  Google Scholar 

  20. Rabilloud T (2009) Membrane proteins and proteomics: love is possible, but so difficult. Electrophoresis 30(Suppl 1):S174–S180

    CrossRef  PubMed  Google Scholar 

  21. Yi JZ, Liu ZX, Craft D et al (2008) Intrinsic peptidase activity causes a sequential multi-step reaction (SMSR) in digestion of human plasma peptides. J Proteome Res 7:5112–5118

    CrossRef  PubMed  CAS  Google Scholar 

  22. Hoofnagle AN (2010) Peptide lost and found: internal standards and the mass spectrometric quantification of peptides. Clin Chem 56:1515–1517

    CrossRef  PubMed  CAS  Google Scholar 

  23. Bystrom CE, Salameh W, Reitz R et al (2010) Plasma renin activity by LC-MS/MS: development of a prototypical clinical assay reveals a subpopulation of human plasma samples with substantial peptidase activity. Clin Chem 56:1561–1569

    CrossRef  PubMed  CAS  Google Scholar 

  24. Hsich G, Kinney K, Gibbs CJ et al (1996) The 14-3-3 brain protein in cerebrospinal fluid as a marker for transmissible spongiform encephalopathies. N Engl J Med 335:924–930

    CrossRef  PubMed  CAS  Google Scholar 

  25. Ladogana A, Sanchez-Juan P, Mitrova E et al (2009) Cerebrospinal fluid biomarkers in human genetic transmissible spongiform encephalopathies. J Neurol 256:1620–1628

    CrossRef  PubMed  CAS  Google Scholar 

  26. Bartosik-Psujek H, Archelos JJ (2004) Tau protein and 14-3-3 are elevated in the cerebrospinal fluid of patients with multiple sclerosis and correlate with intrathecal synthesis of IgG. J Neurol 251:414–420

    CrossRef  PubMed  CAS  Google Scholar 

  27. Colucci M, Roccatagliata L, Capello E et al (2004) The 14-3-3 protein in multiple sclerosis: a marker of disease severity. Mult Scler 10:477–481

    CrossRef  PubMed  CAS  Google Scholar 

  28. Pitarch A, Nombela C, Gil C (2009) Proteomic profiling of serologic response to Candida albicans during host-commensal and host-pathogen interactions. Methods Mol Biol 470:369–411

    CrossRef  PubMed  CAS  Google Scholar 

  29. Pitarch A, Nombela C, Gil C (2011) Prediction of the clinical outcome in invasive candidiasis patients based on molecular fingerprints of five anti-Candida antibodies in serum. Mol Cell Proteomics 10(M110):004010

    PubMed  Google Scholar 

  30. Maass S, Sievers S, Zuhlke D et al (2011) Efficient, global-scale quantification of absolute protein amounts by integration of targeted mass spectrometry and two-dimensional gel-based proteomics. Anal Chem 83:2677–2684

    CrossRef  PubMed  CAS  Google Scholar 

  31. Aude-Garcia C, Collin-Faure V, Luche S et al (2011) Improvements and simplifications in in-gel fluorescent detection of proteins using ruthenium II tris-(bathophenanthroline disulfonate): the poor man’s fluorescent detection method. Proteomics 11:324–328

    CrossRef  PubMed  CAS  Google Scholar 

  32. Chevallet M, Diemer H, Van Dorssealer A et al (2007) Toward a better analysis of secreted proteins: the example of the myeloid cells secretome. Proteomics 7:1757–1770

    CrossRef  PubMed  CAS  Google Scholar 

  33. Luche S, Diemer H, Tastet C et al (2004) About thiol derivatization and resolution of basic proteins in two-dimensional electrophoresis. Proteomics 4:551–561

    CrossRef  PubMed  CAS  Google Scholar 

  34. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    CrossRef  PubMed  CAS  Google Scholar 

  35. Tastet C, Lescuyer P, Diemer H et al (2003) A versatile electrophoresis system for the analysis of high- and low-molecular-weight proteins. Electrophoresis 24:1787–1794

    CrossRef  PubMed  CAS  Google Scholar 

  36. Dowell JA, Johnson JA, Li LJ (2009) Identification of astrocyte secreted proteins with a combination of shotgun proteomics and bioinformatics. J Proteome Res 8:4135–4143

    CrossRef  PubMed  CAS  Google Scholar 

  37. Sanchez JC, Hochstrasser D, Rabilloud T (1999) In-gel sample rehydration of immobilized pH gradient. Methods Mol Biol 112:221–225

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Rabilloud, T., Triboulet, S. (2013). Two-Dimensional SDS-PAGE Fractionation of Biological Samples for Biomarker Discovery. In: Zhou, M., Veenstra, T. (eds) Proteomics for Biomarker Discovery. Methods in Molecular Biology, vol 1002. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-360-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-360-2_13

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-359-6

  • Online ISBN: 978-1-62703-360-2

  • eBook Packages: Springer Protocols