Skip to main content

Droplets as Reaction Compartments for Protein Nanotechnology

Part of the Methods in Molecular Biology book series (MIMB,volume 996)

Abstract

Extreme miniaturization of biological and chemical reactions in pico- to nanoliter microdroplets is emerging as an experimental paradigm that enables more experiments to be carried out with much lower sample consumption, paving the way for high-throughput experiments. This review provides the protein scientist with an experimental framework for (a) formation of polydisperse droplets by emulsification or, alternatively, of monodisperse droplets using microfluidic devices; (b) construction of experimental rigs and microfluidic chips for this purpose; and (c) handling and analysis of droplets.

Key words

  • In vitro compartmentalization
  • Directed evolution
  • Protein engineering
  • Microfluidics
  • Water-in-oil emulsion

This is a preview of subscription content, access via your institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-62703-354-1_16
  • Chapter length: 18 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   119.00
Price excludes VAT (USA)
  • ISBN: 978-1-62703-354-1
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   159.99
Price excludes VAT (USA)
Hardcover Book
USD   249.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Schaerli Y, Hollfelder F (2009) The potential of microfluidic water-in-oil droplets in experimental biology. Mol Biosyst 5:1392–1404

    PubMed  CrossRef  CAS  Google Scholar 

  2. Chen DL, Gerdts CJ, Ismagilov RF (2005) Using Microfluidics to Observe the Effect of Mixing on Nucleation of Protein Crystals. J Am Chem Soc 127:9672–9673

    PubMed  CrossRef  CAS  Google Scholar 

  3. Huebner A, Bratton D, Whyte G, Yang M, deMello AJ, Abell C, Hollfelder F (2009) Static microdroplet arrays: a microfluidic device for droplet trapping, incubation and release for enzymatic and cell-based assays. Lab Chip 9:692–698

    PubMed  CrossRef  CAS  Google Scholar 

  4. Huebner A, Srisa-Art M, Holt D, Abell C, Hollfelder F, Demello AJ, Edel JB (2007) Quantitative detection of protein expression in single cells using droplet microfluidics. Chem Commun 2007:1218–1220

    CrossRef  Google Scholar 

  5. Hufnagel H, Huebner A, Gulch C, Guse K, Abell C, Hollfelder F (2009) An integrated cell culture lab on a chip: modular microdevices for cultivation of mammalian cells and delivery into microfluidic microdroplets. Lab Chip 9:1576–1582

    PubMed  CrossRef  CAS  Google Scholar 

  6. Köster S, Angile FE, Duan H, Agresti JJ, Wintner A, Schmitz C, Rowat AC, Merten CA, Pisignano D, Griffiths AD, Weitz DA (2008) Drop-based microfluidic devices for encapsulation of single cells. Lab Chip 8:1110–1115

    PubMed  CrossRef  Google Scholar 

  7. Clausell-Tormos J, Lieber D, Baret J-C, El-Harrak A, Miller OJ, Frenz L, Blouwolff J, Humphry KJ, Köster S, Duan H, Holtze C, Weitz DA, Griffiths AD, Merten CA (2008) Droplet-Based Microfluidic Platforms for the Encapsulation and Screening of Mammalian Cells and Multicellular Organisms. Chem Biol 15:427–437

    PubMed  CrossRef  CAS  Google Scholar 

  8. Brouzes E, Medkova M, Savenelli N, Marran D, Twardowski M, Hutchison JB, Rothberg JM, Link DR, Perrimon N, Samuels ML (2009) Droplet microfluidic technology for single-cell high-throughput screening. Proc Natl Acad Sci USA 106:14195–14200

    PubMed  CrossRef  CAS  Google Scholar 

  9. Shim JU, Olguin LF, Whyte G, Scott D, Babtie A, Abell C, Huck WTS, Hollfelder F (2009) Simultaneous determination of gene expression and enzymatic activity in individual bacterial cells in microdroplet compartments. J Am Chem Soc 131:15251–15256

    PubMed  CrossRef  CAS  Google Scholar 

  10. El Debs BW, Tschulena U, Griffiths AD, Merten CA (2011) A competitive co-cultivation assay for cancer drug specificity evaluation. J Biomol Screen 16:818–824

    PubMed  CrossRef  CAS  Google Scholar 

  11. Shim J-u, Patil SN, Hodgkinson JT, Bowden SD, Spring DR, Welch M, Huck WTS, Hollfelder F, Abell C (2011) Controlling the contents of microdroplets by exploiting the permeability of PDMS. Lab Chip 11:1132–1137

    PubMed  CrossRef  CAS  Google Scholar 

  12. Huebner A, Olguin LF, Bratton D, Whyte G, Huck WTS, deMello AJ, Edel JB, Abell C, Hollfelder F (2008) Development of quantitative cell-based enzyme assays in microdroplets. Anal Chem 80:3890–3896

    PubMed  CrossRef  CAS  Google Scholar 

  13. Damean N, Olguin LF, Hollfelder F, Abell C, Huck WTS (2009) Simultaneous measurement of reactions in microdroplets filled by concentration gradients. Lab Chip 9:1707–1713

    PubMed  CrossRef  CAS  Google Scholar 

  14. Agresti JJ, Antipov E, Abate AR, Ahn K, Rowat AC, Baret JC, Marquez M, Klibanov AM, Griffiths AD, Weitz DA (2010) Ultrahigh-throughput screening in drop-based microfluidics for directed evolution. Proc Natl Acad Sci USA 107:4004–4009

    PubMed  CrossRef  CAS  Google Scholar 

  15. Aharoni A, Amitai G, Bernath K, Magdassi S, Tawfik DS (2005) High-throughput screening of enzyme libraries: thiolactonases evolved by fluorescence-activated sorting of single cells in emulsion compartments. Chem Biol 12:1281–1289

    PubMed  CrossRef  CAS  Google Scholar 

  16. Mastrobattista E, Taly V, Chanudet E, Treacy P, Kelly BT, Griffiths AD (2005) High-throughput screening of enzyme libraries: in vitro evolution of a beta-galactosidase by fluorescence-activated sorting of double emulsions. Chem Biol 12:1291–1300

    PubMed  CrossRef  CAS  Google Scholar 

  17. Cohen HM, Tawfik DS, Griffiths AD (2004) Altering the sequence specificity of HaeIII methyltransferase by directed evolution using in vitro compartmentalization. Prot Eng Des Sel 17:3–11

    CrossRef  CAS  Google Scholar 

  18. Kintses B, Hein C, Mohamed MF, Fischlechner M, Courtois F, Lainé C, Hollfelder F (2012) Picoliter cell lysate assays in microfluidic droplet compartments for directed enzyme evolution. Chem Biol 19:1001–1009

    Google Scholar 

  19. Shendure J, Ji H (2008) Next-generation DNA sequencing. Nat Biotechnol 26:1135–1145

    PubMed  CrossRef  CAS  Google Scholar 

  20. Umbanhowar PB, Prasad V, Weitz DA (2000) Monodisperse Emulsion Generation via Drop Break Off in a Coflowing Stream. Langmuir 16:347–351

    CrossRef  CAS  Google Scholar 

  21. Theberge AB, Courtois F, Schaerli Y, Fischlechner M, Abell C, Hollfelder F, Huck WTS (2010) Microdroplets in Microfluidics: An Evolving Platform for Discoveries in Chemistry and Biology. Angew Chem Int Ed Engl 49:5846–5868

    PubMed  CAS  Google Scholar 

  22. Kintses B, van Vliet LD, Devenish SR, Hollfelder F (2010) Microfluidic droplets: new integrated workflows for biological experiments. Curr Opin Chem Biol 14:548–555

    PubMed  CrossRef  CAS  Google Scholar 

  23. Holtze C, Rowat AC, Agresti JJ, Hutchison JB, Angilè FE, Schmitz CHJ, Köster S, Duan H, Humphry KJ, Scanga RA, Johnson JS, Pisignano D, Weitz DA (2008) Biocompatible surfactants for water-in-fluorocarbon emulsions. Lab Chip 8:1632

    PubMed  CrossRef  CAS  Google Scholar 

  24. Chen C-H, Sarkar A, Song Y-A, Miller MA, Kim SJ, Griffith LG, Lauffenburger DA, Han J (2011) Enhancing Protease Activity Assay in Droplet-Based Microfluidics Using a Biomolecule Concentrator. J Am Chem Soc 133:10368–10371

    PubMed  CrossRef  CAS  Google Scholar 

  25. Courtois F, Olguin LF, Whyte G, Theberge AB, Huck WTS, Hollfelder F, Abell C (2009) Controlling the retention of small molecules in emulsion microdroplets for use in cell-based assays. Anal Chem 81:3008–3016

    PubMed  CrossRef  CAS  Google Scholar 

  26. Stein V, Johnsson K, Hollfelder F (2007) A Covalent Chemical Genotype–Phenotype Linkage for in vitro Protein Evolution. Chembiochem 8:2191–2194

    PubMed  CrossRef  CAS  Google Scholar 

  27. Kaltenbach M, Stein V, Hollfelder F (2011) SNAP Dendrimers: Multivalent Protein Display on Dendrimer-Like DNA for Directed Evolution. Chembiochem 12:2208–2216

    PubMed  CrossRef  CAS  Google Scholar 

  28. Huebner A, Srisa-Art M, Holt D, Abell C, Hollfelder F, deMello AJ, Edel JB (2007) Quantitative detection of protein expression in single cells using droplet microfluidics. Chem Commun (12):1218–1220

    CrossRef  Google Scholar 

  29. Tawfik DS, Griffiths AD (1998) Man-made cell-like compartments for molecular evolution. Nat Biotechnol 16:652–656

    PubMed  CrossRef  CAS  Google Scholar 

  30. Courtois F, Olguin LF, Whyte G, Bratton D, Huck WTS, Abell C, Hollfelder F (2008) An integrated device for monitoring time-dependent in vitro expression from single genes in picolitre droplets. Chembiochem 9:439–446

    PubMed  CrossRef  CAS  Google Scholar 

  31. Agresti JJ, Kelly BT, Jäschke A, Griffiths AD (2005) Selection of ribozymes that catalyse multiple-turnover Diels–Alder cycloadditions by using in vitro compartmentalization. Proc Natl Acad Sci USA 102:16170–16175

    PubMed  CrossRef  CAS  Google Scholar 

  32. Griffiths AD, Tawfik DS (2003) Directed evolution of an extremely fast phosphotriesterase by in vitro compartmentalization. EMBO J 22:24–35

    PubMed  CrossRef  CAS  Google Scholar 

  33. Stein V, Sielaff I, Johnsson K, Hollfelder F (2007) A covalent chemical genotype-phenotype linkage for in vitro protein evolution. Chembiochem 8:2191–2194

    PubMed  CrossRef  CAS  Google Scholar 

  34. Miller OJ, Bernath K, Agresti JJ, Amitai G, Kelly BT, Mastrobattista E, Taly V, Magdassi S, Tawfik DS, Griffiths AD (2006) Directed evolution by in vitro compartmentalization. Nat Meth 3:561–570

    CrossRef  CAS  Google Scholar 

  35. Kaltenbach M, Devenish SRA, Hollfelder F (2012) A simple method to evaluate the biochemical compatibility of oil/surfactant mixtures for experiments in microdroplets. Lab Chip 12:4185–92

    Google Scholar 

  36. Schaerli Y, Wootton RC, Robinson T, Stein V, Dunsby C, Neil MA, French PM, deMello AJ, Abell C, Hollfelder F (2009) Continuous-flow polymerase chain reaction of single-copy DNA in microfluidic microdroplets. Anal Chem 81:302–306

    PubMed  CrossRef  CAS  Google Scholar 

  37. Frenz L, Blank K, Brouzes E, Griffiths AD (2009) Reliable microfluidic on-chip incubation of droplets in delay-lines. Lab Chip 9:1344–1348

    PubMed  CrossRef  CAS  Google Scholar 

  38. Bertschinger J, Grabulovski D, Neri D (2007) Selection of single domain binding proteins by covalent DNA display. Prot Eng Des Sel 20:57

    CrossRef  CAS  Google Scholar 

  39. Bertschinger J, Neri D (2004) Covalent DNA display as a novel tool for directed evolution of proteins in vitro. Prot Eng Des Sel 17:699

    CrossRef  CAS  Google Scholar 

  40. Doi N, Yanagawa H (1999) STABLE: protein-DNA fusion system for screening of combinatorial protein libraries in vitro. FEBS Lett 457:227–230

    PubMed  CrossRef  CAS  Google Scholar 

  41. Yonezawa M, Doi N, Higashinakagawa T, Yanagawa H (2004) DNA display of biologically active proteins for in vitro protein selection. J Biochem 135:285

    PubMed  CrossRef  CAS  Google Scholar 

  42. Yonezawa M, Doi N, Kawahashi Y, Higashinakagawa T, Yanagawa H (2003) DNA display for in vitro selection of diverse peptide libraries. Nuc Acids Res 31:e118

    CrossRef  Google Scholar 

  43. Kaltenbach M, Hollfelder F (2011) SNAP display: In vitro protein evolution in microdroplets. In: Jackson RH, Douthwaite JA (eds) Ribosome Display and Related Technologies: Methods and Protocols. Humana Press (Springer Protocols), London

    Google Scholar 

  44. Kiss MM, Ortoleva-Donnelly L, Beer NR, Warner J, Bailey CG, Colston BW, Rothberg JM, Link DR, Leamon JH (2011) High-Throughput Quantitative Polymerase Chain Reaction in Picoliter Droplets. Anal Chem 80:8975–8981

    CrossRef  Google Scholar 

  45. Ghadessy FJ, Ong JL, Holliger P (2001) Directed evolution of polymerase function by compartmentalized self-replication. Proc Natl Acad Sci USA 98:4552–4557

    PubMed  CrossRef  CAS  Google Scholar 

  46. d’ Abbadie M, Hofreiter M, Vaisman A, Loakes D, Gasparutto D, Cadet J, Woodgate R, Pääbo S, Holliger P (2007) Molecular breeding of polymerases for amplification of ancient DNA. Nat Biotechnol 25:939–943

    CrossRef  Google Scholar 

  47. Ghadessy FJ, Ramsay N, Boudsocq F, Loakes D, Brown A, Iwai S, Vaisman A, Woodgate R, Holliger P (2004) Generic expansion of the substrate spectrum of a DNA polymerase by directed evolution. Nat Biotechnol 22:755–759

    PubMed  CrossRef  CAS  Google Scholar 

  48. Mazutis L, Araghi AF, Miller OJ, Baret JC, Frenz L, Janoshazi A, Taly V, Miller BJ, Hutchison JB, Link D, Griffiths AD, Ryckelynck M (2009) Droplet-based microfluidic systems for high-throughput single DNA molecule isothermal amplification and analysis. Anal Chem 81:4813–4821

    PubMed  CrossRef  CAS  Google Scholar 

  49. Paegel BM, Joyce GF (2010) Microfluidic Compartmentalized Directed Evolution. Chem Biol 17:717–724

    PubMed  CrossRef  CAS  Google Scholar 

  50. Jousse F, Farr R, Link DR, Fuerstman MJ, Garstecki P (2006) Bifurcation of droplet flows within capillaries. Phys Rev E 74:036311

    CrossRef  Google Scholar 

Download references

Acknowledgments

This work was supported by the EU Marie-Curie network ProSA and the BBSRC. S.R.A.D. and M.F. are EU Marie-Curie fellows. F.H. holds an ERC Starting Investigator Grant.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2013 Springer Science+Business Media, New York

About this protocol

Cite this protocol

Devenish, S.R.A., Kaltenbach, M., Fischlechner, M., Hollfelder, F. (2013). Droplets as Reaction Compartments for Protein Nanotechnology. In: Gerrard, J. (eds) Protein Nanotechnology. Methods in Molecular Biology, vol 996. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-354-1_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-354-1_16

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-353-4

  • Online ISBN: 978-1-62703-354-1

  • eBook Packages: Springer Protocols