Skip to main content

Recording Macroscopic Currents in Large Patches from Xenopus Oocytes

  • Protocol
  • First Online:
Ion Channels

Part of the book series: Methods in Molecular Biology ((MIMB,volume 998))

Abstract

The excised inside-out patch clamp technique gives rapid access to the intracellular surface of the plasma membrane while measuring channel activity. This way the effects of intracellular regulators of ion channels or transporters can be studied in isolation, in the absence of most of the cellular machinery. This chapter summarizes our experience with this technique using large patches to study various ion channels expressed in Xenopus oocytes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hilgemann DW (1990) Regulation and deregulation of cardiac Na+/Ca2+ exchange in giant excised sarcolemmal membrane patches. Nature 344:242–245

    Article  PubMed  CAS  Google Scholar 

  2. Hilgemann DW (1995) The giant membrane patch. In: Sakmann B, Neher E (eds) Single channel recording, 2nd edn. Kluwer Academic, pp 307–327

    Google Scholar 

  3. Lukacs V, Thyagarajan B, Varnai P, Balla A, Balla T, Rohacs T (2007) Dual regulation of TRPV1 by phosphoinositides. J Neurosci 27:7070–7080

    Article  PubMed  CAS  Google Scholar 

  4. Rohacs T, Lopes C, Mirshahi T, Jin T, Zhang H, Logothetis DE (2002) Assaying phosphatidylinositol bisphosphate regulation of potassium channels. Methods Enzymol 345:71–92

    Article  PubMed  Google Scholar 

  5. Rohacs T, Lopes CM, Jin T, Ramdya PP, Molnár Z, Logothetis DE (2003) Specificity of activation by phosphoinositides determines lipid regulation of Kir channels. Proc Natl Acad Sci U S A 100:745–750

    Article  PubMed  CAS  Google Scholar 

  6. Rohacs T, Lopes CM, Michailidis I, Logothetis DE (2005) PI(4,5)P2 regulates the activation and desensitization of TRPM8 channels through the TRP domain. Nat Neurosci 8:626–634

    Article  PubMed  CAS  Google Scholar 

  7. Thyagarajan B, Lukacs V, Rohacs T (2008) Hydrolysis of phosphatidylinositol 4,5-bisphosphate mediates calcium-induced inactivation of TRPV6 channels. J Biol Chem 283:14980–14987

    Article  PubMed  CAS  Google Scholar 

  8. Zakharian E, Cao C, Rohacs T (2011) Intracellular ATP supports TRPV6 activity via lipid kinases and the generation of PtdIns(4,5)P2. FASEB J 25:3915–3928

    Article  PubMed  CAS  Google Scholar 

  9. Barnard EA, Miledi R, Sumikawa K (1982) Translation of exogenous messenger RNA coding for nicotinic acetylcholine receptors produces functional receptors in Xenopus oocytes. Proc R Soc Lond B Biol Sci 215:241–246

    Article  PubMed  CAS  Google Scholar 

  10. Smith LD, Xu WL, Varnold RL (1991) Oogenesis and oocyte isolation. Methods Cell Biol 36:45–60

    Article  PubMed  CAS  Google Scholar 

  11. Csanady L, Torocsik B (2009) Four Ca2+ ions activate TRPM2 channels by binding in deep crevices near the pore but intracellularly of the gate. J Gen Physiol 133:189203

    Article  Google Scholar 

  12. Liman ER, Tytgat J, Hess P (1992) Subunit stoichiometry of a mammalian K+ channel determined by construction of multimeric cDNAs. Neuron 9:861–871

    Article  PubMed  CAS  Google Scholar 

  13. Baukrowitz T, Tucker SJ, Schulte U, Benndorf K, Ruppersberg JP, Fakler B (1999) Inward rectification in KATP channels: a pH switch in the pore. EMBO J 18:847–853

    Article  PubMed  CAS  Google Scholar 

  14. Fink M, Lesage F, Duprat F, Heurteaux C, Reyes R, Fosset M, Lazdunski M (1998) A neuronal two P domain K+ channel stimulated by arachidonic acid and polyunsaturated fatty acids. EMBO J 17:3297–3308

    Article  PubMed  CAS  Google Scholar 

  15. Venkatachalan SP, Bushman JD, Mercado JL, Sancar F, Christopherson KR, Boileau AJ (2007) Optimized expression vector for ion channel studies in Xenopus oocytes and mammalian cells using alfalfa mosaic virus. Pflugers Arch 454:155–163

    Article  PubMed  CAS  Google Scholar 

  16. Shih TM, Smith RD, Toro L, Goldin AL (1998) High-level expression and detection of ion channels in Xenopus oocytes. Methods Enzymol 293:529–556

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Rohacs, T. (2013). Recording Macroscopic Currents in Large Patches from Xenopus Oocytes. In: Gamper, N. (eds) Ion Channels. Methods in Molecular Biology, vol 998. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-351-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-351-0_9

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-350-3

  • Online ISBN: 978-1-62703-351-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics