Advertisement

Generation of Human-Induced Pluripotent Stem Cells by Lentiviral Transduction

  • Jennifer C. Moore
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 997)

Abstract

Human somatic cells can be reprogrammed to the pluripotent state to become human-induced pluripotent stem cells (hiPSC). This reprogramming is achieved by activating signaling pathways that are expressed during early development. These pathways can be induced by ectopic expression of four transcription factors—Oct4, Sox2, Klf4, and c-Myc. Although there are many ways to deliver these transcription factors into the somatic cells, this chapter will provide protocols that can be used to generate hiPSC from lentiviruses.

Key words

iPSC Lentivirus Reprogramming Viral method 

Notes

Acknowledgment

Supported by NIH U24 MH068457, RC1 CA147187, and R21 DA032984-01.

References

  1. 1.
    Evans M (2011) Discovering pluripotency: 30 years of mouse embryonic stem cells. Nat Rev Mol Cell Biol 12:680–686PubMedCrossRefGoogle Scholar
  2. 2.
    Pierce GB (1967) Teratocarcinoma: model for a developmental concept of cancer. Curr Top Dev Biol 2:223–246PubMedCrossRefGoogle Scholar
  3. 3.
    Stevens LC (1967) The biology of teratomas. Adv Morphog 6:1–31PubMedGoogle Scholar
  4. 4.
    Evans MJ, Kaufman MH (1981) Establishment in culture of pluripotential cells from mouse embryos. Nature 292:154–156PubMedCrossRefGoogle Scholar
  5. 5.
    Martin GR (1981) Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci USA 78:7634–7638PubMedCrossRefGoogle Scholar
  6. 6.
    Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM (1998) Embryonic stem cell lines derived from human blastocysts. Science 282:1145–1147PubMedCrossRefGoogle Scholar
  7. 7.
    Yabut O, Bernstein HS (2011) The promise of human embryonic stem cells in aging-associated diseases. Aging 3:494–508PubMedGoogle Scholar
  8. 8.
    Jensen J, Hyllner J, Bjorquist P (2009) Human embryonic stem cell technologies and drug discovery. J Cell Physiol 219:513–519PubMedCrossRefGoogle Scholar
  9. 9.
    Leeb C, Jurga M, McGuckin C, Forraz N, Thallinger C, Moriggl R, Kenner L (2011) New perspectives in stem cell research: beyond embryonic stem cells. Cell Prolif 44(Suppl 1):9–14PubMedCrossRefGoogle Scholar
  10. 10.
    Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676PubMedCrossRefGoogle Scholar
  11. 11.
    Vitale AM, Wolvetang E, Mackay-Sim A (2011) Induced pluripotent stem cells: a new technology to study human diseases. Int J Biochem Cell Biol 43:843–846PubMedCrossRefGoogle Scholar
  12. 12.
    Wu SM, Hochedlinger K (2011) Harnessing the potential of induced pluripotent stem cells for regenerative medicine. Nat Cell Biol 13:497–505PubMedCrossRefGoogle Scholar
  13. 13.
    Ebert AD, Yu J, Rose FF Jr, Mattis VB, Lorson CL, Thomson JA, Svendsen CN (2009) Induced pluripotent stem cells from a spinal muscular atrophy patient. Nature 457:277–280PubMedCrossRefGoogle Scholar
  14. 14.
    Moretti A, Bellin M, Welling A, Jung CB, Lam JT, Bott-Flugel L, Dorn T, Goedel A, Hohnke C, Hofmann F, Seyfarth M, Sinnecker D, Schomig A, Laugwitz KL (2010) Patient-specific induced pluripotent stem-cell models for long-QT syndrome. N Engl J Med 363:1397–1409PubMedCrossRefGoogle Scholar
  15. 15.
    Hussein SM, Nagy K, Nagy A (2011) Human induced pluripotent stem cells: the past, present, and future. Clin Pharmacol Ther 89: 741–745PubMedCrossRefGoogle Scholar
  16. 16.
    Soldner F, Hockemeyer D, Beard C, Gao Q, Bell GW, Cook EG, Hargus G, Blak A, Cooper O, Mitalipova M, Isacson O, Jaenisch R (2009) Parkinson’s disease patient-derived induced pluripotent stem cells free of viral reprogramming factors. Cell 136:964–977PubMedCrossRefGoogle Scholar
  17. 17.
    Sommer CA, Sommer AG, Longmire TA, Christodoulou C, Thomas DD, Gostissa M, Alt FW, Murphy GJ, Kotton DN, Mostoslavsky G (2010) Excision of reprogramming transgenes improves the differentiation potential of iPS cells generated with a single excisable vector. Stem Cells 28:64–74PubMedGoogle Scholar
  18. 18.
    Kaji K, Norrby K, Paca A, Mileikovsky M, Mohseni P, Woltjen K (2009) Virus-free induction of pluripotency and subsequent excision of reprogramming factors. Nature 458:771–775PubMedCrossRefGoogle Scholar
  19. 19.
    Woltjen K, Michael IP, Mohseni P, Desai R, Mileikovsky M, Hamalainen R, Cowling R, Wang W, Liu P, Gertsenstein M, Kaji K, Sung HK, Nagy A (2009) piggyBac transposition reprograms fibroblasts to induced pluripotent stem cells. Nature 458:766–770PubMedCrossRefGoogle Scholar
  20. 20.
    Si-Tayeb K, Noto FK, Sepac A, Sedlic F, Bosnjak ZJ, Lough JW, Duncan SA (2010) Generation of human induced pluripotent stem cells by simple transient transfection of plasmid DNA encoding reprogramming factors. BMC Dev Biol 10:81PubMedCrossRefGoogle Scholar
  21. 21.
    Seki T, Yuasa S, Oda M, Egashira T, Yae K, Kusumoto D, Nakata H, Tohyama S, Hashimoto H, Kodaira M, Okada Y, Seimiya H, Fusaki N, Hasegawa M, Fukuda K (2010) Generation of induced pluripotent stem cells from human terminally differentiated circulating T cells. Cell Stem Cell 7:11–14PubMedCrossRefGoogle Scholar
  22. 22.
    Miyoshi N, Ishii H, Nagano H, Haraguchi N, Dewi DL, Kano Y, Nishikawa S, Tanemura M, Mimori K, Tanaka F, Saito T, Nishimura J, Takemasa I, Mizushima T, Ikeda M, Yamamoto H, Sekimoto M, Doki Y, Mori M (2011) Reprogramming of mouse and human cells to pluripotency using mature microRNAs. Cell Stem Cell 8:633–638PubMedCrossRefGoogle Scholar
  23. 23.
    Delenda C (2004) Lentiviral vectors: optimization of packaging, transduction and gene expression. J Gene Med 6(Suppl 1):S125–S138PubMedCrossRefGoogle Scholar
  24. 24.
    Lin S, Talbot P (2011) Methods for culturing mouse and human embryonic stem cells. Methods Mol Biol 690:31–56PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Jennifer C. Moore
    • 1
  1. 1.Rutgers NIMH Stem Cell Center and Department of Genetics, RutgersThe State University of New Jersey, Nelson Biological LaboratoryPiscatawayUSA

Personalised recommendations