A New Chemical Approach to the Efficient Generation of Mouse Embryonic Stem Cells

  • Hossein Baharvand
  • Seyedeh-Nafiseh Hassani
Part of the Methods in Molecular Biology book series (MIMB, volume 997)


Here, we present a highly efficient and reproducible method for the establishment of mouse embryonic stem cells (mESCs) from embryonic day 3.5 (E3.5) whole blastocysts. This protocol involves the use of small molecules SB431542 and PD0325901, which inhibit transforming growth factor-β (TGF-β) and extracellular signal-regulated kinases (ERK1/2), respectively. This protocol is universal in the derivation of mESC lines from NMRI, C57BL/6, BALB/c, DBA/2, and FVB/N strains, which have previously been considered refractory or non-permissive for ESC establishment. The efficiency of mESC lines generation is 100%, regardless of genetic background.

Key words

Mouse Embryonic stem cells derivation Small molecule ERK TGF-β 



This study was funded by grants provided from Royan Institute, the Iranian Council of Stem Cell Technology, and the Iran National Science Foundation (INSF).


  1. 1.
    Martin GR (1981) Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci USA 78:7634–7638PubMedCrossRefGoogle Scholar
  2. 2.
    Evans MJ, Kaufman MH (1981) Establishment in culture of pluripotential cells from mouse embryos. Nature 292:154–156PubMedCrossRefGoogle Scholar
  3. 3.
    Yu J, Thomson JA (2008) Pluripotent stem cell lines. Genes Dev 22:1987–1997PubMedCrossRefGoogle Scholar
  4. 4.
    Nichols J, Smith A (2009) Naive and primed pluripotent states. Cell Stem Cell 4:487–492PubMedCrossRefGoogle Scholar
  5. 5.
    Hanna J, Markoulaki S, Mitalipova M, Cheng AW, Cassady JP, Staerk J, Carey BW, Lengner CJ, Foreman R, Love J, Gao Q, Kim J, Jaenisch R (2009) Metastable pluripotent states in NOD-mouse-derived ESCs. Cell Stem Cell 4: 513–524PubMedCrossRefGoogle Scholar
  6. 6.
    Buecker C, Geijsen N (2010) Different flavors of pluripotency, molecular mechanisms, and practical implications. Cell Stem Cell 7:559–564PubMedCrossRefGoogle Scholar
  7. 7.
    Hassani SN, Totonchi M, Farrokhi A, Taei A, Larijani MR, Gourabi H, Baharvand H (2012) Simultaneous suppression of TGF-beta and ERK signaling contributes to the highly efficient and reproducible generation of mouse embryonic stem cells from previously considered refractory and non-permissive strains. Stem Cell Rev 8(2):472–481PubMedCrossRefGoogle Scholar
  8. 8.
    Ying QL, Wray J, Nichols J, Batlle-Morera L, Doble B, Woodgett J, Cohen P, Smith A (2008) The ground state of embryonic stem cell self-renewal. Nature 453:519–523PubMedCrossRefGoogle Scholar
  9. 9.
    Acevedo N, Wang X, Dunn RL, Smith GD (2007) Glycogen synthase kinase-3 regulation of chromatin segregation and cytokinesis in mouse preimplantation embryos. Mol Reprod Dev 74:178–188PubMedCrossRefGoogle Scholar
  10. 10.
    Tighe A, Ray-Sinha A, Staples OD, Taylor SS (2007) GSK-3 inhibitors induce chromosome instability. BMC Cell Biol 8:34PubMedCrossRefGoogle Scholar
  11. 11.
    Michalska E (2007) Isolation and propagation of mouse embryonic fibroblasts and preparation of mouse embryonic feeder layer cells. Curr Protoc Stem Cell Biol  Chapter 1: Unit1C 3
  12. 12.
    Meissner A, Eminli S, Jaenisch R (2009) Derivation and manipulation of murine embryonic stem cells. Methods Mol Biol 482:3–19PubMedCrossRefGoogle Scholar
  13. 13.
    Wong ES, Ban KH, Mutalif R, Jenkins NA, Copeland NG, Stewart CL (2010) A simple procedure for the efficient derivation of mouse ES cells. Methods Enzymol 476:265–283PubMedCrossRefGoogle Scholar
  14. 14.
    Hogan B (1994) Manipulating the mouse embryo: a laboratory manual. Cold Spring Harbor Laboratory Press, Plainview, NY, USAGoogle Scholar
  15. 15.
    Batlle-Morera L, Smith A, Nichols J (2008) Parameters influencing derivation of embryonic stem cells from murine embryos. Genesis 46(12):758–767PubMedCrossRefGoogle Scholar
  16. 16.
    Bryja V, Bonilla S, Arenas E (2006) Derivation of mouse embryonic stem cells. Nat Protoc 1:2082–2087PubMedCrossRefGoogle Scholar
  17. 17.
    Baharvand H, Matthaei KI (2004) Culture condition difference for establishment of new embryonic stem cell lines from the C57BL/6 and BALB/c mouse strains. In Vitro Cell Dev Biol Anim 40:76–81PubMedCrossRefGoogle Scholar
  18. 18.
    Umehara H, Kimura T, Ohtsuka S, Nakamura T, Kitajima K, Ikawa M, Okabe M, Niwa H, Nakano T (2007) Efficient derivation of embryonic stem cells by inhibition of glycogen synthase kinase-3. Stem Cells 25:2705–2711PubMedCrossRefGoogle Scholar
  19. 19.
    Schoonjans L, Kreemers V, Danloy S, Moreadith RW, Laroche Y, Collen D (2003) Improved generation of germline-competent embryonic stem cell lines from inbred mouse strains. Stem Cells 21:90–97PubMedCrossRefGoogle Scholar
  20. 20.
    Cinelli P, Casanova EA, Uhlig S, Lochmatter P, Matsuda T, Yokota T, Rulicke T, Ledermann B, Burki K (2008) Expression profiling in transgenic FVB/N embryonic stem cells over expressing STAT3. BMC Dev Biol 8:57PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Hossein Baharvand
    • 1
    • 2
  • Seyedeh-Nafiseh Hassani
    • 1
    • 2
  1. 1.Department of Stem Cells and Developmental Biology, Cell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECRTehranIran
  2. 2.Department of Developmental BiologyUniversity of Science and Culture, ACECRTehranIran

Personalised recommendations