Advertisement

Generation of Transgene-Free iPSC Lines from Human Normal and Neoplastic Blood Cells Using Episomal Vectors

  • Kejin Hu
  • Igor Slukvin
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 997)

Abstract

Human induced pluripotent stem cells (iPSCs) have become an important tool for modeling human diseases and are considered a potential source of therapeutic cells. Original methods for iPSC generation use fibroblasts as a cell source for reprogramming and retroviral vectors as a delivery method of the reprogramming factors. However, fibroblasts require extended time for expansion and viral delivery of transgenes results in the integration of vector sequences into the genome which is a source of potential insertion mutagenesis, residual expressions, and reactivation of transgenes during differentiation. Here, we provide a detailed protocol for the efficient generation of transgene-free iPSC lines from human bone marrow and cord blood cells with a single transfection of non-integrating episomal plasmids. This method uses mononuclear bone marrow and cord blood cells, and makes it possible to generate transgene-free iPSCs 1–3 weeks faster than previous methods of reprogramming with fibroblasts. Additionally, we show that this approach can be used for efficient reprogramming of chronic myeloid leukemia cells.

Key words

Epstein–Barr virus Episomal plasmids Reprogramming Induced pluripotent stem cells Human bone marrow Cord blood Chronic myeloid leukemia 

Notes

Acknowledgements

We thank Professor James Thomson at Morgridge Institute for Research, Madison, WI, for providing reprogramming plasmids and FGF2, and Patricia Liu for editorial assistance. This work was supported by funds from the National Institute of Health (P01 GM081629 and P51RR000167).

References

  1. 1.
    Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, Nie J, Jonsdottir GA, Ruotti V, Stewart R, Slukvin II, Thomson JA (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318:1917–1920PubMedCrossRefGoogle Scholar
  2. 2.
    Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:861–872PubMedCrossRefGoogle Scholar
  3. 3.
    Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676PubMedCrossRefGoogle Scholar
  4. 4.
    Stadtfeld M, Nagaya M, Utikal J, Weir G, Hochedlinger K (2008) Induced pluripotent stem cells generated without viral integration. Science 322:945–949PubMedCrossRefGoogle Scholar
  5. 5.
    Seki T, Yuasa S, Oda M, Egashira T, Yae K, Kusumoto D, Nakata H, Tohyama S, Hashimoto H, Kodaira M, Okada Y, Seimiya H, Fusaki N, Hasegawa M, Fukuda K (2010) Generation of induced pluripotent stem cells from human terminally differentiated circulating T cells. Cell Stem Cell 7:11–14PubMedCrossRefGoogle Scholar
  6. 6.
    Ban H, Nishishita N, Fusaki N, Tabata T, Saeki K, Shikamura M, Takada N, Inoue M, Hasegawa M, Kawamata S, Nishikawa S (2011) Efficient generation of transgene-free human induced pluripotent stem cells (iPSCs) by temperature-sensitive Sendai virus vectors. Proc Natl Acad Sci USA 108:14234–14239PubMedCrossRefGoogle Scholar
  7. 7.
    Okita K, Nakagawa M, Hyenjong H, Ichisaka T, Yamanaka S (2008) Generation of mouse induced pluripotent stem cells without viral vectors. Science 322:949–953PubMedCrossRefGoogle Scholar
  8. 8.
    Zhou H, Wu S, Joo JY, Zhu S, Han DW, Lin T, Trauger S, Bien G, Yao S, Zhu Y, Siuzdak G, Scholer HR, Duan L, Ding S (2009) Generation of induced pluripotent stem cells using recombinant proteins. Cell Stem Cell 4:381–384PubMedCrossRefGoogle Scholar
  9. 9.
    Kim D, Kim CH, Moon JI, Chung YG, Chang MY, Han BS, Ko S, Yang E, Cha KY, Lanza R, Kim KS (2009) Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins. Cell Stem Cell 4:472–476PubMedCrossRefGoogle Scholar
  10. 10.
    Warren L, Manos PD, Ahfeldt T, Loh YH, Li H, Lau F, Ebina W, Mandal PK, Smith ZD, Meissner A, Daley GQ, Brack AS, Collins JJ, Cowan C, Schlaeger TM, Rossi DJ (2010) Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA. Cell Stem Cell 7:618–630PubMedCrossRefGoogle Scholar
  11. 11.
    Kaji K, Norrby K, Paca A, Mileikovsky M, Mohseni P, Woltjen K (2009) Virus-free induction of pluripotency and subsequent excision of reprogramming factors. Nature 458:771–775PubMedCrossRefGoogle Scholar
  12. 12.
    Woltjen K, Michael IP, Mohseni P, Desai R, Mileikovsky M, Hamalainen R, Cowling R, Wang W, Liu P, Gertsenstein M, Kaji K, Sung HK, Nagy A (2009) piggyBac transposition reprograms fibroblasts to induced pluripotent stem cells. Nature 458:766–770PubMedCrossRefGoogle Scholar
  13. 13.
    Yusa K, Rad R, Takeda J, Bradley A (2009) Generation of transgene-free induced pluripotent mouse stem cells by the piggyBac transposon. Nat Methods 6:363–369PubMedCrossRefGoogle Scholar
  14. 14.
    Liang G, Taranova O, Xia K, Zhang Y (2010) Butyrate promotes induced pluripotent stem cell generation. J Biol Chem 285:25516–25521PubMedCrossRefGoogle Scholar
  15. 15.
    Mali P, Chou BK, Yen J, Ye Z, Zou J, Dowey S, Brodsky RA, Ohm JE, Yu W, Baylin SB, Yusa K, Bradley A, Meyers DJ, Mukherjee C, Cole PA, Cheng L (2010) Butyrate greatly enhances derivation of human induced pluripotent stem cells by promoting epigenetic remodeling and the expression of pluripotency-associated genes. Stem Cells 28:713–720PubMedCrossRefGoogle Scholar
  16. 16.
    Ichida JK, Blanchard J, Lam K, Son EY, Chung JE, Egli D, Loh KM, Carter AC, Di Giorgio FP, Koszka K, Huangfu D, Akutsu H, Liu DR, Rubin LL, Eggan K (2009) A small-molecule inhibitor of tgf-Beta signaling replaces sox2 in reprogramming by inducing nanog. Cell Stem Cell 5:491–503PubMedCrossRefGoogle Scholar
  17. 17.
    Lin T, Ambasudhan R, Yuan X, Li W, Hilcove S, Abujarour R, Lin X, Hahm HS, Hao E, Hayek A, Ding S (2009) A chemical platform for improved induction of human iPSCs. Nat Methods 6:805–808PubMedCrossRefGoogle Scholar
  18. 18.
    Shi Y, Do JT, Desponts C, Hahm HS, Scholer HR, Ding S (2008) A combined chemical and genetic approach for the generation of induced pluripotent stem cells. Cell Stem Cell 2:525–528PubMedCrossRefGoogle Scholar
  19. 19.
    Huangfu D, Maehr R, Guo W, Eijkelenboom A, Snitow M, Chen AE, Melton DA (2008) Induction of pluripotent stem cells by defined factors is greatly improved by small-molecule compounds. Nat Biotechnol 26:795–797PubMedCrossRefGoogle Scholar
  20. 20.
    Lyssiotis CA, Foreman RK, Staerk J, Garcia M, Mathur D, Markoulaki S, Hanna J, Lairson LL, Charette BD, Bouchez LC, Bollong M, Kunick C, Brinker A, Cho CY, Schultz PG, Jaenisch R (2009) Reprogramming of murine fibroblasts to induced pluripotent stem cells with chemical complementation of Klf4. Proc Natl Acad Sci USA 106:8912–8917PubMedCrossRefGoogle Scholar
  21. 21.
    Lindner SE, Sugden B (2007) The plasmid replicon of Epstein-Barr virus: mechanistic insights into efficient, licensed, extrachromosomal replication in human cells. Plasmid 58:1–12PubMedCrossRefGoogle Scholar
  22. 22.
    Kirchmaier AL, Sugden B (1995) Plasmid maintenance of derivatives of oriP of Epstein-Barr virus. J Virol 69:1280–1283PubMedGoogle Scholar
  23. 23.
    Sugden B, Warren N (1988) Plasmid origin of replication of Epstein-Barr virus, oriP, does not limit replication in cis. Mol Biol Med 5:85–94PubMedGoogle Scholar
  24. 24.
    Yu J, Hu K, Smuga-Otto K, Tian S, Stewart R, Slukvin II, Thomson JA (2009) Human induced pluripotent stem cells free of vector and transgene sequences. Science 324:797–801PubMedCrossRefGoogle Scholar
  25. 25.
    Hu K, Yu J, Suknuntha K, Tian S, Montgomery K, Choi KD, Stewart R, Thomson JA, Slukvin II (2011) Efficient generation of transgene-free induced pluripotent stem cells from normal and neoplastic bone marrow and cord blood mononuclear cells. Blood 117:e109–e119PubMedCrossRefGoogle Scholar
  26. 26.
    Chou BK, Mali P, Huang X, Ye Z, Dowey SN, Resar LM, Zou C, Zhang YA, Tong J, Cheng L (2011) Efficient human iPS cell derivation by a non-integrating plasmid from blood cells with unique epigenetic and gene expression signatures. Cell Res 21:518–529PubMedCrossRefGoogle Scholar
  27. 27.
    Chen G, Gulbranson DR, Hou Z, Bolin JM, Ruotti V, Probasco MD, Smuga-Otto K, Howden SE, Diol NR, Propson NE, Wagner R, Lee GO, Antosiewicz-Bourget J, Teng JM, Thomson JA (2011) Chemically defined conditions for human iPSC derivation and culture. Nat Methods 8:424–429PubMedCrossRefGoogle Scholar
  28. 28.
    Marchetto MC, Yeo GW, Kainohana O, Marsala M, Gage FH, Muotri AR (2009) Transcriptional signature and memory retention of human-induced pluripotent stem cells. PLoS One 4:e7076PubMedCrossRefGoogle Scholar
  29. 29.
    Okita K, Matsumura Y, Sato Y, Okada A, Morizane A, Okamoto S, Hong H, Nakagawa M, Tanabe K, Tezuka K, Shibata T, Kunisada T, Takahashi M, Takahashi J, Saji H, Yamanaka S (2011) A more efficient method to generate integration-free human iPS cells. Nat Methods 8:409–412PubMedCrossRefGoogle Scholar
  30. 30.
    Yu J, Chau KF, Vodyanik MA, Jiang J, Jiang Y (2011) Efficient feeder-free episomal reprogramming with small molecules. PLoS One 6:e17557PubMedCrossRefGoogle Scholar
  31. 31.
    Rajesh D, Dickerson SJ, Yu J, Brown ME, Thomson JA, Seay NJ (2011) Human lymphoblastoid B cell lines reprogrammed to EBV-free induced pluripotent stem cells. Blood 118:1797–1800Google Scholar
  32. 32.
    Raya A, Rodriguez-Piza I, Navarro S, Richaud-Patin Y, Guenechea G, Sanchez-Danes A, Consiglio A, Bueren J, Izpisua Belmonte JC (2010) A protocol describing the genetic correction of somatic human cells and subsequent generation of iPS cells. Nat Protoc 5:647–660PubMedCrossRefGoogle Scholar
  33. 33.
    Park IH, Lerou PH, Zhao R, Huo H, Daley GQ (2008) Generation of human-induced pluripotent stem cells. Nat Protoc 3:1180–1186PubMedCrossRefGoogle Scholar
  34. 34.
    Staerk J, Dawlaty MM, Gao Q, Maetzel D, Hanna J, Sommer CA, Mostoslavsky G, Jaenisch R (2010) Reprogramming of human peripheral blood cells to induced pluripotent stem cells. Cell Stem Cell 7:20–24PubMedCrossRefGoogle Scholar
  35. 35.
    Loh YH, Hartung O, Li H, Guo C, Sahalie JM, Manos PD, Urbach A, Heffner GC, Grskovic M, Vigneault F, Lensch MW, Park IH, Agarwal S, Church GM, Collins JJ, Irion S, Daley GQ (2010) Reprogramming of T cells from human peripheral blood. Cell Stem Cell 7:15–19PubMedCrossRefGoogle Scholar
  36. 36.
    Brown ME, Rondon E, Rajesh D, Mack A, Lewis R, Feng X, Zitur LJ, Learish RD, Nuwaysir EF (2010) Derivation of induced pluripotent stem cells from human peripheral blood T lymphocytes. PLoS One 5:e11373PubMedCrossRefGoogle Scholar
  37. 37.
    Xu C, Inokuma MS, Denham J, Golds K, Kundu P, Gold JD, Carpenter MK (2001) Feeder-free growth of undifferentiated human embryonic stem cells. Nat Biotechnol 19:971–974PubMedCrossRefGoogle Scholar
  38. 38.
    Aggarwal R, Pompili VJ, Das H (2010) Genetic modification of ex-vivo expanded stem cells for clinical application. Front Biosci 15:854–871PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Kejin Hu
    • 1
  • Igor Slukvin
    • 1
  1. 1.Wisconsin National Primate Research CenterUniversity of Wisconsin-MadisonMadisonUSA

Personalised recommendations