Skip to main content

Designing Novel Inhibitors of Trypanosoma brucei

  • Protocol
  • First Online:
In Silico Models for Drug Discovery

Part of the book series: Methods in Molecular Biology ((MIMB,volume 993))

Abstract

Computational simulations of essential biological systems in pathogenic organisms are increasingly being used to reveal structural and dynamical features for targets of interest. At the same time, increased research efforts, especially from academia, have been directed toward drug discovery for neglected tropical diseases. Although these diseases cripple large populations in less fortunate parts of the world, either very few new drugs are being developed or the available treatments for them have severe side effects, including death. This chapter walks readers through a computational investigation used to find novel inhibitors to target one of these neglected diseases, African sleeping sickness (human African trypanosomiasis). Such studies may suggest novel small-molecule compounds that could be considered as part of an early-stage drug discovery effort. As an example target protein of interest, we focus on the essential protein RNA-editing ligase 1 (REL1) in Trypanosoma brucei, the causative agent of human African trypanosomiasis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Carnes J, Stuart K (2008) Working together: the RNA editing machinery in Trypanosoma brucei. In: Göringer HU (ed) RNA editing, vol 20. Nucleic acids and molecular biology (Gross HG, ed). Springer, Berlin/Heidelberg, pp 143–164. doi: 10.1007/978-3-540-73787-2_7

  2. Ochsenreiter T, Hajduk S (2008) The function of RNA editing in trypanosomes. In: Göringer HU (ed), RNA editing, vol 20. Nucleic acids and molecular biology (Gross HG, ed). Springer, Berlin/Heidelberg, pp 181–197. doi: 10.1007/978-3-540-73787-2_9

  3. Golas MM, Bohm C, Sander B et al (2009) Snapshots of the RNA editing machine in trypanosomes captured at different assembly stages in vivo. EMBO J 28:766–778. doi:10.1038/emboj.2009.19

    Article  PubMed  CAS  Google Scholar 

  4. Schnaufer A, Ernst NL, Palazzo SS et al (2003) Separate insertion and deletion subcomplexes of the Trypanosoma brucei RNA editing complex. Mol Cell 12:307–319. doi:S1097276503002867

    Article  PubMed  CAS  Google Scholar 

  5. Schnaufer A, Wu M, Park YJ et al (2010) A protein-protein interaction map of trypanosome 20S editosomes. J Biol Chem 285:5282–5295. doi:M109.059378

    Article  PubMed  CAS  Google Scholar 

  6. Rusché LN, Huang CE, Piller KJ et al (2001) The two RNA ligases of the Trypanosoma brucei RNA editing complex: cloning the essential band IV gene and identifying the band V gene. Mol Cell Biol 21:979–989. doi:10.1128/MCB.21.4.979-989.2001

    Article  PubMed  Google Scholar 

  7. Schnaufer A, Panigrahi AK, Panicucci B et al (2001) An RNA ligase essential for RNA editing and survival of the bloodstream form of Trypanosoma brucei. Science 291:2159–2162. doi:10.1126/science.1058955

    Article  PubMed  CAS  Google Scholar 

  8. Shuman S, Lima CD (2004) The polynucleotide ligase and RNA capping enzyme superfamily of covalent nucleotidyltransferases. Curr Opin Struct Biol 14:757–764. doi:10.1016/j.sbi.2004.10.006

    Article  PubMed  CAS  Google Scholar 

  9. Deng J, Schnaufer A, Salavati R et al (2004) High resolution crystal structure of a key editosome enzyme from Trypanosoma brucei: RNA editing ligase 1. J Mol Biol 343:601–613. doi:10.1016/j.jmb.2004.08.041

    Article  PubMed  CAS  Google Scholar 

  10. Amaro RE, Swift RV, McCammon JA (2007) Functional and structural insights revealed by molecular dynamics simulations of an essential RNA editing ligase in Trypanosoma brucei. PLoS Negl Trop Dis 1:e68. doi:10.1371/journal.pntd.0000068

    Article  PubMed  Google Scholar 

  11. Cherepanov AV, de Vries S (2002) Kinetic mechanism of the Mg2+-dependent nucleotidyl transfer catalyzed by T4 DNA and RNA ligases. J Biol Chem 277:1695–1704. doi:10.1074/jbc.M109616200

    Article  PubMed  CAS  Google Scholar 

  12. Håkansson K, Doherty AJ, Shuman S, Wigley DB (1997) X-ray crystallography reveals a large conformational change during guanyl transfer by mRNA capping enzymes. Cell 89:545–553. doi:10.1016/S0092-8674(00)80236-6

    Article  PubMed  Google Scholar 

  13. Nandakumar J, Shuman S, Lima CD (2006) RNA ligase structures reveal the basis for RNA specificity and conformational changes that drive ligation forward. Cell 127:71–84. doi:10.1016/j.cell.2006.08.038

    Article  PubMed  CAS  Google Scholar 

  14. El Omari K, Ren J, Bird LE et al (2006) Molecular architecture and ligand recognition determinants for T4 RNA ligase. J Biol Chem 281:1573–1579. doi:10.1074/jbc.M509658200

    Article  PubMed  CAS  Google Scholar 

  15. Zhang L, Hermans J (1996) Hydrophilicity of cavities in proteins. Proteins 24:433–438. doi:10.1002/(SICI)1097-0134(199604)24:4<433::AID-PROT3>3.0.CO;2-F

    Article  PubMed  CAS  Google Scholar 

  16. Vriend G (1990) WHAT IF: a molecular modeling and drug design program. J Mol Graph 8(52–56):29

    Google Scholar 

  17. Bas DC, Rogers DM, Jensen JH (2008) Very fast prediction and rationalization of pKa values for protein-ligand complexes. Proteins 73:765–783. doi:10.1002/prot.22102

    Article  PubMed  CAS  Google Scholar 

  18. Li H, Robertson AD, Jensen JH (2005) Very fast empirical prediction and rationalization of protein pKa values. Proteins 61:704–721. doi:10.1002/prot.20660

    Article  PubMed  CAS  Google Scholar 

  19. Olsson MH, Sondergaard CR, Rostkowski M, Jensen JH (2011) PROPKA3: consistent treatment of internal and surface residues in empirical pKa predictions. J Chem Theory Comput 7:525–537

    Article  CAS  Google Scholar 

  20. Phillips JC, Braun R, Wang W et al (2005) Scalable molecular dynamics with NAMD. J Comput Chem 26:1781–1802. doi:10.1002/jcc.20289

    Article  PubMed  CAS  Google Scholar 

  21. Swift RV, Durrant J, Amaro RE, McCammon JA (2009) Toward understanding the conformational dynamics of RNA ligation. Biochemistry 48:709–719. doi:10.1021/bi8018114

    Article  PubMed  CAS  Google Scholar 

  22. Case DA, Cheatham TE 3rd, Darden T et al (2005) The Amber biomolecular simulation programs. J Comput Chem 26:1668–1688. doi:10.1002/jcc.20290

    Article  PubMed  CAS  Google Scholar 

  23. Hess B, Kutzner C, Van Der Spoel D, Lindahl E (2008) GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J Chem Theory Comput 4:435–447

    Article  CAS  Google Scholar 

  24. Bowers KJ, Chow E, Xu H et al (2006) Scalable algorithms for molecular dynamics simulations on commodity clusters. In: International conference for high performance computing, networking, storage and analysis (SC06), 11–17 Nov 2006, Tampa, FL

    Google Scholar 

  25. Christen M, Hunenberger PH, Bakowies D et al (2005) The GROMOS software for biomolecular simulation: GROMOS05. J Comput Chem 26:1719–1751. doi:10.1002/jcc.20303

    Article  PubMed  CAS  Google Scholar 

  26. MacKerell AD, Bashford D, Bellott M et al (1998) All-atom empirical potential for molecular modeling and dynamics studies of proteins. J Phys Chem B 102:3586–3616

    Article  CAS  Google Scholar 

  27. Hornak V, Abel R, Okur A et al (2006) Comparison of multiple amber force fields and development of improved protein backbone parameters. Proteins 65:712–725. doi:10.1002/Prot.21123

    Article  PubMed  CAS  Google Scholar 

  28. Wang JM, Wolf RM, Caldwell JW et al (2004) Development and testing of a general amber force field. J Comput Chem 25:1157–1174

    Article  PubMed  CAS  Google Scholar 

  29. Meagher KL, Redman LT, Carlson HA (2003) Development of polyphosphate parameters for use with the AMBER force field. J Comput Chem 24:1016–1025. doi:10.1002/Jcc.10262

    Article  PubMed  CAS  Google Scholar 

  30. Oelschlaeger P, Klahn M, Beard WA et al (2007) Magnesium-cationic dummy atom molecules enhance representation of DNA polymerase beta in molecular dynamics simulations: improved accuracy in studies of structural features and mutational effects. J Mol Biol 366:687–701. doi:10.1016/J.Jmb.2006.10.095

    Article  PubMed  CAS  Google Scholar 

  31. Amaro RE, Schnaufer A, Interthal H et al (2008) Discovery of drug-like inhibitors of an essential RNA-editing ligase in Trypanosoma brucei. Proc Natl Acad Sci USA 105:17278–17283. doi:10.1073/pnas.0805820105

    Article  PubMed  CAS  Google Scholar 

  32. Morris GM, Huey R, Lindstrom W et al (2009) AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J Comput Chem 30:2785–2791. doi:10.1002/jcc.21256

    Article  PubMed  CAS  Google Scholar 

  33. Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31:455–461. doi:10.1002/jcc.21334

    PubMed  CAS  Google Scholar 

  34. Lang PT, Brozell SR, Mukherjee S et al (2009) DOCK 6: combining techniques to model RNA-small molecule complexes. RNA 15:1219–1230. doi:rna.1563609

    Article  PubMed  CAS  Google Scholar 

  35. OpenEye Scientific Software I (2010) OEChem, Santa Fe, NM

    Google Scholar 

  36. McGann MR, Almond HR, Nicholls A et al (2003) Gaussian docking functions. Biopolymers 68:76–90. doi:10.1002/Bip.10207

    Article  PubMed  CAS  Google Scholar 

  37. Jones G, Willett P, Glen RC et al (1997) Development and validation of a genetic algorithm for flexible docking. J Mol Biol 267:727–748. doi:10.1006/jmbi.1996.0897

    Article  PubMed  CAS  Google Scholar 

  38. Halgren TA, Murphy RB, Friesner RA et al (2004) Glide: a new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening. J Med Chem 47:1750–1759. doi: 10.1021/jm030644s

    Google Scholar 

  39. Friesner RA, Banks JL, Murphy RB et al (2004) Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J Med Chem 47:1739–1749. doi:10.1021/jm0306430

    Article  PubMed  CAS  Google Scholar 

  40. Jain AN (2007) Surflex-Dock 2.1: robust performance from ligand energetic modeling, ring flexibility, and knowledge-based search. J Comput Aided Mol Des 21:281–306. doi:10.1007/s10822-007-9114-2

    Article  PubMed  CAS  Google Scholar 

  41. Venkatachalam CM, Jiang X, Oldfield T, Waldman M (2003) LigandFit: a novel method for the shape-directed rapid docking of ligands to protein active sites. J Mol Graph Model 21:289–307. doi:10.1016/S1093-3263(02)00164-X

    Article  PubMed  CAS  Google Scholar 

  42. Oprea TI, Matter H (2004) Integrating virtual screening in lead discovery. Curr Opin Chem Biol 8:349–358. doi:10.1016/j.cbpa.2004.06.008

    Article  PubMed  CAS  Google Scholar 

  43. Carlson HA (2002) Protein flexibility and drug design: how to hit a moving target. Curr Opin Chem Biol 6:447–452. doi:S1367593102003411

    Article  PubMed  CAS  Google Scholar 

  44. Lin JH, Perryman AL, Schames JR, McCammon JA (2002) Computational drug design accommodating receptor flexibility: the relaxed complex scheme. J Am Chem Soc 124:5632–5633. doi:ja0260162

    Article  PubMed  CAS  Google Scholar 

  45. Amaro RE, Baron R, McCammon JA (2008) An improved relaxed complex scheme for receptor flexibility in computer-aided drug design. J Comput Aided Mol Des 22:693–705. doi:10.1007/s10822-007-9159-2

    Article  PubMed  CAS  Google Scholar 

  46. Ryan AJ, Gray NM, Lowe PN, Chung CW (2003) Effect of detergent on “promiscuous” inhibitors. J Med Chem 46(16):3448–3451. doi:10.1021/jm0340896

    Article  PubMed  CAS  Google Scholar 

  47. Durrant JD, Hall L, Swift RV et al (2010) Novel naphthalene-based inhibitors of Trypanosoma brucei RNA editing ligase 1. PLoS Negl Trop Dis 4:e803. doi:10.1371/journal.pntd.0000803

    Article  PubMed  Google Scholar 

  48. Moshiri H, Acoca S, Kala S et al (2011) Naphthalene-based RNA editing inhibitor blocks RNA editing activities and editosome assembly in Trypanosoma brucei. J Biol Chem 286:14178–14189. doi:10.1074/jbc.M110.199646

    Article  PubMed  CAS  Google Scholar 

  49. Moshiri H, Salavati R (2010) A fluorescence-based reporter substrate for monitoring RNA editing in trypanosomatid pathogens. Nucleic Acids Res 38:e138. doi:10.1093/nar/gkq333

    Article  PubMed  Google Scholar 

  50. Durrant JD, McCammon JA (2011) Towards the development of novel Trypanosoma ­brucei RNA editing ligase 1 inhibitors. BMC Pharmacol 11:9. doi:10.1186/1471-2210-11-9

    Article  PubMed  CAS  Google Scholar 

  51. Durrant JD, Friedman AJ, McCammon JA (2011) CrystalDock: a novel approach to fragment-based drug design. J Chem Inf Model 51:2573–2580. doi:10.1021/ci200357y

    Article  PubMed  CAS  Google Scholar 

  52. Durrant JD, Amaro RE, McCammon JA (2009) Autogrow: a novel algorithm for protein inhibitor design. Chem Biol Drug Des 73:168–178. doi:10.1111/j.1747-0285.2008.00761.x

    Article  PubMed  CAS  Google Scholar 

  53. Rostkowski M, Olsson MH, Sondergaard CR, Jensen JH (2011) Graphical analysis of pH-dependent properties of proteins predicted using PROPKA. BMC Struct Biol 11:6. doi:10.1186/1472-6807-11-6

    Article  PubMed  CAS  Google Scholar 

  54. Unni S, Huang Y, Hanson RM et al (2011) Web servers and services for electrostatics calculations with APBS and PDB2PQR. J Comput Chem 32:1488–1491. doi:10.1002/jcc.21720

    Article  PubMed  CAS  Google Scholar 

  55. Dolinsky TJ, Czodrowski P, Li H et al (2007) PDB2PQR: expanding and upgrading ­automated preparation of biomolecular ­structures for molecular simulations. Nucleic Acids Res 35 (Web Server issue):W522–W525. doi: 10.1093/nar/gkm276

  56. Dolinsky TJ, Nielsen JE, McCammon JA, Baker NA (2004) PDB2PQR: an automated pipeline for the setup of Poisson-Boltzmann electrostatics calculations. Nucleic Acids Res 32 (Web Server issue):W665–W667. doi: 10.1093/nar/gkh381

  57. Ho CK, Wang LK, Lima CD, Shuman S (2004) Structure and mechanism of RNA ligase. Structure 12:327–339. doi:10.1016/j.str.2004.01.011

    PubMed  CAS  Google Scholar 

  58. Yin S, Ho CK, Shuman S (2003) Structure-function analysis of T4 RNA ligase 2. J Biol Chem 278:17601–17608. doi:10.1074/jbc.M300817200

    Article  PubMed  CAS  Google Scholar 

  59. Tomkinson AE, Vijayakumar S, Pascal JM, Ellenberger T (2006) DNA ligases: structure, reaction mechanism, and function. Chem Rev 106:687–699. doi:10.1021/cr040498d

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded in part by the National Institutes of Health through the NIH Director’s New Innovator Award Program DP2-OD007237 to R.E.A.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Demir, Ö., Amaro, R.E. (2013). Designing Novel Inhibitors of Trypanosoma brucei . In: Kortagere, S. (eds) In Silico Models for Drug Discovery. Methods in Molecular Biology, vol 993. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-342-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-342-8_15

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-341-1

  • Online ISBN: 978-1-62703-342-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics